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Charge Exchange in Gas-Surface Collisions: The Three Electronic State System
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A theoretical treatment of near-resonant charge exchange occurring in gas—surface collisions is presented for a coupled three
electronic state system. The surface is represented by a cluster of five metal atoms and the diatomics in molecules procedure
is used to construct the gas-surface interaction potentials and nonadiabatic couplings. These are used in the common eikonal
formalism which gives a time-dependent description for the evolution of the transition amplitudes and the nuclear positions
and momenta. An application is made to a hyperthermal energy sodium atom scattering off a tungsten (110) surface. Results
of the ionization probability vs. the initial kinetic energy of the sodium atom are presented. The three electronic channels
correspond to a neutral (the initial state) and two ionic channels. In comparison to the two state results, it is found that
the extra ionic channel gives rise to additional interference effects but it does not substantially increase the ionization probability.

L. Introduction

Near-resonant charge exchange between a gas atom and a solid
surface is a phenomenon that occurs in many surface science
experiments. The electron transfer takes place between energy
levels of the gas and those of the surface that lie energetically close
to each other, possibly only for a short time during the scattering
process. Transitions between these levels are strongly influenced
by the nuclear motions and are referred to as nonadiabatic
transitions. From a theoretical point of view, at least two electronic
states for the nuclear motion must be included in the description
of the charge-exchange process. Ab initio solutions of the nuclear
Schrodinger equation are difficult to obtain so that many ap-
proaches (as is the case here) employ semiclassical techniques to
determine the final values of the transition probabilities. We have
previously reported studies of a two electronic state system con-
sisting of a neutral and an ionic channel.!? The problem with
relating a two electronic state calculation to gas—surface processes
is that in the solid there is generally a band of states that can
interact with the gas atom level and presumably this continuum
of states will influence the electron-transfer rate. As an attempt
to assess the importance of close-lying surface electronic levels
we present here a study of charge exchange with three levels, one
corresponding to a neutral atom and two to an ion. We have
chosen to maintain discrete energy levels, rather than introduce
continuum like features as other workers have done,>” as the
choice of potential surfaces and coupling matrix elements is well
prescribed by the electronic structure procedure.

There have been numerous theoretical studies of gas-phase
collisions that involve charge (electron} exchange where three or
more electronic states are energetically accessible. Most of these
studies employ semiclassical techniques based on solving the
time-dependent electronic Schordinger equation with an assumed
(e.g., rectilinear or Coulomb) nuclear trajectory to calculate the
electron capture cross sections. Even though this present study
involves charge exchange between a gas atom and a metal surface,
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the construction of the interaction potentials and nonadiabatic
couplings and the semiclassical description of the collision dy-
namics are based on techniques that were developed for gas-phase
systems. It therefore seems appropriate to make a few general
comments on these previous studies in order to help orient this
work.

The majority of the theoretical treatments of multistate electron
exchange has been done in ion—atom collisions.® One-electron
systems (e.g. bare nucleus scattering off a hydrogen atom) have
been extensively investigated. This is because they are, compared
to many electron systems, much simpler to solve yet they contain
most of the theoretical aspects (sans electron correlation) of the
more complicated systems. These theoretical aspects include the
selection of the electronic basis set, the origin dependence (mo-
mentum transfer) of the electron transfer cross section, and the
prescription of the nuclear trajectories.

At collision energies of kiloelectronvolts and above, there are
often many (five or more) energetically open electronic channels,
especially when a large nuclear charge asymmetry is present.
These channels become populated by both angular (Coriolis)
couplings at usually small internuclear separations and radial
couplings (often of the Landau—Zener type) at larger internuclear
separations. The convergence of the cross sections with respect
to both the type and size of the electronic basis has been a major
subject of theoretical interest. Generally, molecular orbitals
provide a good description at small internuclear distances whereas
atomic orbitals are more appropriate at large distances. There
have been numerous calculations that employ molecular orbitals®
(perturbed stationary state) or atomic orbitals (possibly appended
with united atom orbitals)'? and recently a procedure that
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transforms from molecular to atomic orbitals has been pro-
posed.!12 One would expect however that, as the collision energy
decreases, the molecular orbital description would provide a better
electronic representation.

The problem of the origin dependence of the electron-transfer
cross section has been known for some time.!* For simplicity,
consider a single electron that is transferred from nucleus A to
nucleus B. Before the collision, the electron has a velocity due
to its orbital motion and an additional velocity resulting from its
association with nucleus A. If the electronic origin is chosen to
be A, this latter velocity is zero whereas if the origin is B, it is
the relative collision velocity. For an origin somewhere on a line
joining A and B, this velocity is between these limits. After the
collision, the same situation exists due to the electron’s association
with B. Therefore there is in general a change in the velocity of
the electron during the collision which is not accounted for in the
Born—Oppenheimer solutions of the electronic Hamiltonian. As
the collision velocity increases, this velocity change or momentum
transfer becomes more important. This origin dependence can
be removed by including electron translation factors'* and several
schemes are available for constructing them (see ref 15 and papers
cited therein).

The last theoretical aspect of interest here involves the choice
of the nuclear trajectory. Most of the semiclassical studies use
impact parameter methods that employ either rectilinear or
Coulomb trajectories. At collision energies of kiloelectronvolts
and above, the use of rectilinear trajectories in small angle
scattering introduces little error.! However at lower collision
energies, a noticeable dependence of the cross section on the
nuclear trajectory has been reported.!” This suggests that extra
care is needed in defining the nuclear trajectory at these lower
collision energies.

This study involves hyperthermal energy (5-50 eV) collisions
of a sodium atom with a tungsten surface. At these energies, a
molecular orbital representation is appropriate and is obtained
from the diatomics in molecules!®!® procedure. This procedure
has the advantage of ensuring the proper description of the as-
ymptotic channels. The tungsten surface consists of a five-atom
cluster of wt ich four of the atoms lie at the corners of a paral-
lelogram with dimensions corresponding to the (110) crystal face.
The fifth at:.m lies at the center of the other four atoms and the
sodium atom approaches perpendicular to it. The details of the
procedure used to construct the gas—surface interaction potentials
and nonadiabatic couplings have been presented elsewhere! and
only the results are used here. At hyperthermal energies the
momentum transfer of the electron is so small that it can be
neglected so that electron translation factors are not included.

The mean trajectory procedure based on using a common ei-
konal? is used to solve for the collision dynamics. This procedure
results in a coupled set of time-dependent Hamilton-like equations
that self-consistently determine the transition amplitudes and the
nuclear positions and momenta. The self-consistency results from
the requirement that the trajectories for the nuclear positions and
momenta satisfy the conservation of energy principle. Thus much
of the arbitrariness of the trajectories used in other treatments
is avoided. The use of a mean trajectory is an approximation and
recently a comparison between quantal and common eikonal
transition probabilities for the two state case were reported.?! At
low energies (below 25 eV) the results essentially agree. At higher
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energies the overall trends of the quantal results were followed
but the Stuckelberg oscillations were not quantitatively reproduced.

The initial studies!? were done for a coupled two electronic state
system consisting of a neutral channel (the initial state) and an
ionic channel. Final values of the electron-transfer probabilities
were calculated as a function of the initial kinetic energy of the
sodium atom which varied between 5 and 50 eV. The results
showed an overall increase of the electron-transfer probability as
the kinetic energy of the sodium atom increased. The disagreement
with the experimental observations?? of almost unit probability
for electron transfer was most noticeable at the lowest energies.
There were also rapid oscillations in the calculated ionization
probabilities which are due to an interference between the neutral
and ionic pathways.?

In the work presented here, an additional ionic channel is
included in the calculation. To our knowledge, this is the first
treatment of electron transfer at metal surfaces that employs a
discrete electronic representation consisting of three electronic
channels. The primary objective is to determine how this extra
ionic channel influences the electron-transfer probability. This
should also give some insight into how electron transfer at metal
surfaces is affected by a continuum of surface electronic states.
In section II, a brief presentation of the formalism needed in the
three-state calculations is presented. Results for the ionization
probability for the three-state system are presented and compared
to the separate two-state systems in section II1. The paper closes
with conclusions in section IV,

II. The Three Electronic State System

There are three major problems that must be solved in our
treatment of electron transfer at metal surfaces. The first problem
involves finding the solutions for the eigenvalues and eigenfunctions
of the neutral and ionic surfaces. A five-atom cluster is used to
represent the surface and its electronic properties are solved for
within the diatomics in molecules procedure.’® The second problem
entails the construction of the gas—surface interaction potentials
and nonadiabatic couplings. The surface eigenfunctions are used
to construct an electronic basis and the potentials and nonadiabatic
couplings are again obtained within the diatomics in molecules
framework. The details of this procedure are given in ref 19 and
1. These adiabatic potentials and nonadiabatic couplings are
transformed into diabatic potentials which are used in the common
eikonal formalism to solve for the transition amplitudes. The
common eikonal formalism has been treated in detail else-
where!2%2 and only a brief sketch of it is presented here.
Throughout this treatment, the positions of the surface nuclei are
held fixed and the perpendicular approach of the sodium atom
to the center tungsten atom is used. Also given here is a brief
overview of the procedure used to obtain the unitary transfor-
mation needed in going from the adiabatic to diabatic electronic
representation for the three-state system.

For the one-dimensional system considered here, the solutions
of the time-independent nuclear Schrodinger equation satisfy

_hz dz Vd
— —+ R) = EY(R) 1
a3t V) YR = Ew®) ()
where R is the separation of the sodium atom from the surface
and m is the mass of the sodium atom. For a three electronic state
system, V¥ is the (3 X 3) matrix representation of the electronic
Hamiltonian in the diabatic representation and ¢ is the (3 X 1)
column vector of the nuclear amplitudes. The solutions of eq 1
are written in the form

Y(R) = x(R)el/MS® )
where S(R) is the common (for all electronic channels) eikonal.

Substituting eq 2 into eq 1, invoking the short wavelength ap-
proximation, and transforming into time results in a set of coupled
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first-order equations of the form

h d ‘
7 3 G0 = ViC(n) + EJV?}CJ(’) ®)

where the C’s are just, within a phase factor, the time-dependent
x{R()). Equations 3 can be recast into the form of Hamilton’s
equations of motion by defining the Hamiltonian as
P
=—+
H(R,P,C) m TV C))
where for three electronic states (C; = (C¥; + iC¥)/(2h)!/?
3
V= FZZIV;;(C;Z +C?)+ 2I§jV5’,j(C;C; +CiChH ()

and the momentum, P, is defined as

dS(R(1))
() = —3— ©)
With eq 5, eq 4 can be reexpressed as
dC; dH 3
= —— = d i
dt  acCi 2LVHCH @
dct 3
Jj_ 6H _ & r
&t acr 25,V iCh @

which have the form of Hamilton’s equations of motion. In eq
7 and 8, the real and imaginary parts of the transition amplitudes
form sets of canonical variables. A convenient choice for the
trajectories of R(¢) and P(¢) is furnished by requiring that there
be conservation of energy thus

dR O4H P
dt P m ®)
dP _ 9H v

&~ TeR " TR (10)
Equations 7-10 are a coupled set of differential equations that
self-consistently determine the nuclear transition amplitudes. The
probability, P, of emerging in the electronic channel “/” after the
collision is over is

Py(») = C*(=)Ci(«) (11)

As is seen in eq 5, the potential in the Hamiltonian is an average
potential so that the nuclear position and momentum cannot be
strictly interpreted as the classical position and momentum. -

The electronic Hamiltonian in eq 1 is defined in the diabatic
electronic representation. Since potential energy surfaces are
generally obtained in the adiabatic representation, a unitary
transformation relating the two schemes needs to be constructed.
The diabatic representation proposed by Smith? which rigorously
gives the null matrix for the electronic representation of the nuclear
momentum operator is used here. In this procedure the unitary
transformation satisfies a first-order differential equation in the
variable R of the form

dA(R,Ry)
dR

where Ry = « and the boundary condition is that A(Ry,R,) =
1. For three electronic states, eq 12 is a (3 X 3) matrix equation
and the coupling matrix, d®, has the form

+d® ARRy) =0 (12)

0 d, dis
é=|-d 0 a3 (13)
—d1; —d3 0
where
as = (\I!’Iil\lla)l 14
i 8% dr (14)
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i.e., the coupling between the adiabatic states i and j and (...J...)
indicates an integration over electronic coordinates only. A general
procedure for constructing the transformation for the three-state
case has been given by Top and Baer? and only the results of this
procedure are presented here. In general it is possible to express
the transformation as a product of three matrices, Q,(v), Qx(¢),
and Q;(9) where

[Qi()]; = silsjl(l ~2E;)(3; cos o + Sij sin &) + 80 15

where 5, is the Kronecker delta function

Ey=1fori>j amn
=0fori<j

and « is v, ¢, and @ for @y, @,, and @, respectively. The matrix
elements of the transformation are obtained from

A = ?;[Ql(7)]mi[Q2(¢)]ij[Qs(o)]jn (18)

From eq 12 it is not difficult to show that the angles satisfy

do .
R —(d%, sin vy + d3; cos v) (19)
dy .
I = (@hcosy-dhsiny) tang-dy - (20)
do . a1
-l a8, cos v — d?, sin y)(cos @) 21)

The boundary conditions chosen for Ry = «© are that§ = ¢ = vy
= (0. These equations are numerically integrated over R
throughout the collision. The diabatic matrix elements of the
electronic Hamiltonian are

Vi= Zk: VidpAy (22)

where the A;; are defined in eq 18 and the Vj are the adiabatic
eigenvalues.

The general prescription for performing the calculation begins
with the selection of the initial conditions for eq 7-10. In all cases
the initial electronic state corresponds to the neutral channel
(channel 3) so that, initially, P, = 1 and P, = P, = 0. The initial
separation from the surface (R) is chosen sufficiently large (10
A) so that the Na~W(110) interaction is negligible. Prescribing
the initial kinetic energy, E%, determines the initial momentum

P(1=0) = -(2mE})'/? (23)

The calculations are simplified somewhat by modeling the no-
nadiabatic couplings with a Gaussian so that

diy = aye iRRD’ (24)

where gy is the maximum value of the coupling and R;; is the
distance where the maximum occurs. The parameter b;; is chosen
such that the integral over R of eq 14 and the absolute value of
eq 24 are equal. ‘

The calculation consists of numerically integrating?’ in time
eq 7-10. At each integration point the adiabatic potentials and
couplings are calculated. Equations 19-21 are numerically in-
tegrated to the corresponding distance which gives the transfor-
mation angles at the point R. These angles define the transfor-
mation matrix which furnish the diabatic potentials at the distance
R. Equations 7 through 10 are evaluated, the time is incremented,
and the procedure is repeated. This is continued until well after
the collision is over which furnishes from eq 11 the final values
of P,, P,, and P;. Another probability of interest is the total ion
fraction P, It is defined as

P = Pi() + Py(=) (25)
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Figure 1. Potentials and nonadiabatic couplings for the states of B,
symmetry. (a) Nonadiabatic couplings: (—) calculated couplings, (---)
modeled couplings. (b) Adiabatic potentials. (c) Diabatic potentials.

TABLE I: Coefficients of the Gaussians Used To Model the
Nonadiabatic Couplings

ij ay by, Ry
12 2.60 11.6 3.44
13 0.25 1.45 3.38
23 2.18 8.09 3.86

which is the sum of the transition probabilities for emerging in
the two ionic channels. This is also referred to as the total
electron-transfer probability.

III. Results

In this section results for the transition probabilities as a function
of the initial kinetic energy of the sodium atom for a three
electronic state system are presented. The three electronic states
that effectively couple are those of B, symmetry from our previous
study of the interaction potentials of a Na atom interacting with
the five-atom W substrate. The system consists of one asymp-
totically neutral state and two asymptotically ionic states. The
neutral state always corresponds to the initial electronic channel.

The adiabatic gas—surface interaction potentials and nonadi-
abatic couplings for the B, symmetry states are shown in Figure
1, b and a, respectively. This system exhibits two avoided crossings
in the regions where the nonadiabatic couplings are the largest.
The parameters used to model the couplings are given in Table
I and the modeled couplings are also shown in Figure l1a. Carrying
through the procedure of the preceding section results in the
diabatic potentials displayed in Figure 1c. The avoided crossings
present in the adiabatic case are replaced by actual crossings in
the diabatic case. The nonadiabatic couplings are replaced by
the off-diagonal matrix elements of the electronic Hamiltonian
in the diabatic representation. The divergence of these off-diagonal
terms at small distances is a consequence of 8, ¢, and v not being
equal to «/2 in this region.

Results for a typical trajectory with an initial kinetic energy
of 50 eV are shown in Figure 2. The plot of R vs. ¢ {Figure 2a)
shows that the sodium atom approaches the surface, undergoes
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Figure 2. Trajectory results for an initial kinetic of 50 eV. (a) Rvs. t.
(b) Pvs.t. The unit of Pis 3.8 X 1077 gcm/s. (c) ¥ (dashed line) and
the diabatic potentials vs. z. (d) P;, P,, and Py vs. .

a single collision, and departs. The momentum, P, is initially
negative and constant as the sodium atom approaches the surface
(Figure 2b). Near the surface the magnitude of P increases due
to the influence of the ionic well. At the turning point P is zero
and it becomes positive and constant after the collision is over.
Initially ¥ (dashed line in Figure 2¢) coincides with V4, the neutral
potential. Near the surface it resembles the ionic potential, ¥3,,
which indicates that the electron is transferred to the surface
during the initial part of the collision. After the collision ¥ lies
between the ionic and neutral potentials which emphasizes its
average nature, There are two regions where the probabilities
(Figure 2d) undergo large changes which correspond to the regions
where the diabatic potentials cross. The rapid oscillations between
these regions are due to the divergence of the off-diagonal potential
terms.

The results for the final values of the transition probabilities,
P, and Py, and the total ion fraction, P as a function of the initial
kinetic energy are shown in Figure 3, a, b, and c, respectively.
There are two main features worth noting in these results. The
first is that over the entire range of kinetic energy the contribution
of P, to P is on the average substantially less than that of P,.
The second is that there seems to be rapid oscillations in the P
and P, vs. E}, curves that are superimposed on much more gradual
ones.

There are two possibilities that could lead to the relatively small
contribution of P, to P, These possibilities are that either
channels 1 and 3 do not couple effectively or that the neutral flux
that survives the initial crossing between channels 2 and 3 is
relatively small. In order to test the first possibility, separate
two-state calculations were done for the systems (V;z,V;?;land
(¥4,,V4,). The results for the ionization probability for the systems
(Véz, %) and (¥3,,74;) vs. the initial kinetic energy are shown
in Figure 4, a and b, respectively. A comparison of parts a and
b of Figure 4 clearly demonstrates that both separate two-state
systems lead to roughly the same ionization probability. Therefore
the relatively small contribution of P, to P*" must be due to a
rather large loss of neutral flux at the initial crossing (V3,,V3,).
This in part is a consequence of the hyperthermal energies used
here. At these energies, the system tends to evolve on the lowest
adiabatic potential (V3;) which corresponds to a diabatic transition
from channel 3 to channel 2 during the initial part of the collision.
Since the coupling between the ionic channels is small (d%; in
l;gure 1a), the ionic flux remains in channel 2 until the potentials

4, and ¥3; cross on the outward path. Thus on both the inward
and outward paths, the crossing between V3, and V; accounts
for most of the change in probability. This picture becomes less
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Figure 3. Final values of the probabilities as a function of the initial
kinetic energy. (a) P, vs. Ei. (b) P, vs. EL. (c) P vs, EL.
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Figure 4. Final values of the electron-transfer probability vs. E}, for the
s;;rarate two-state systems. (a) The two states correspond to the V3, and

%1 potentials. (b) The two states correspond to the ¥, and V3, poten-
tials.

valid at higher collision energies.

The oscillatory behavior of the electron-transfer probability has
been theoretically interpreted by Lichten.”* Generally, oscillations
occur when more than one pathway leads from an initial to a final
state. For a two-state system, there are two pathways corre-
sponding to evolution on the neutral and ionic potentials that lead
to each final state. For the case of a neutral initial state and an
ionic final state, the first pathway corresponds to a transition to
the ionic state as the Na atom approaches the surface with the
Na atom remaining in the ionic state as it departs the surface.
Path 2 has the Na atom remaining in the neutral state until it
scatters from the surface at which point there is a transition to
the ionic state. A phase difference develops between these
pathways which results in an interference effect at the final
crossing on the outward path. The phase difference is given by
(for the V4,14, system)

1 t
2= f (- (26)

which results in an oscillatory dependence of the electron-transfer
probability given by sin? (2/2). Since the neutral and ionic

Olson and Garrison

potentials are relatively far apart inside the crossing, the phase
difference is large resulting in the rapid oscillations seen in Figure
4.

The interpretation of the oscillations for the three-state case
are a little more involved. In the following, the positions of the
inner and outer crossings are designated by R, and R,, respectively.
There are a total of eight different pathways leading from the
initial neutral channel to alt final channels. Of these only three
lead to a final state in channel 2. Paths 1 and 2 correspond to
the pathways of the ¥3,, 14, two-state system described above and
give rise to the rapid oscillations of P, in Figure 3a. For path 3
the Na atom starts in the neutral channel (state 3) until the inner
crossing where there is a transition to state 1. On the outward
path the Na atom first makes a transition to state 3 and then to
state 2. The slower oscillations arise from the interference between
paths 1 and 3. A reasonable estimate of the phase difference
between these paths can be obtained from an approximate form
of eq 26. Transforming eq 26 to an integral over R and assuming
both a constant velocity and sudden transitions leads to a phase
difference between path 1 and 3 of

o=l fo - wars Con-mar] @)

where v is the initial velocity of the sodium atom and R, is the
turning point. Between R, and R,, V4, is nearly constant and V3,
is almost linear (see Figure 1c) so that the first integral in eq 27
is approximately

Ry AE pR
S, h- v dR~ 22 f (R~ R) dR =
AE(R, - R)/2 (28)

where AE = V§;(R)) — V5,(R) and AR = R, - R,. A reasonable
approximation for the second integral in eq 27 is obtained by
noticing that %, and V3, are topologically very similar. In fact,
if ¥4, is displaced downward until its well coincides with V3, the
two curves are nearly superimposable. Therefore since V§3(Ri)
= V4,(Ry), the second integral becomes

R;
S 07 - 1) dR ~ AE(R; - Ry) (29)
P
Using eq 28 and 29 in eq 27 leads to
AE
Q= E’-(R0 + R; -2R,;) (30)

In the case discussed here, R, and R, are 3.86 and 3.44 A, re-
?ectively, and AE is 1.14 eV. For a typical turning point of 1
, €q 30 becomes

Q = 325/E,\? (31)

where the kinetic energy has units of electronvolts. A calculation
of sin? (2/2) between an initial kinetic energy of 20 and 35 eV
leads to three maxima which is in rough agreement with the
calculated results of Figure 3a. One would not expect perfect
agreement since the constant velocity assumption is least valid
at these low energies. However, this rather crude analysis clearly
demonstrates that the slower oscillations are a consequence of the
smaller phase difference between path 1 and path 3 as compared
to the phase difference between path 1 and path 2.

IV. Conclusions

There are two primary conclusions that can be made from the
results of this study. The first is that, at the collision energies
used here, the addition of an extra ionic channel does little to
enhance the total electron-transfer probability. The second
conclusion is that the extra ionic channel does give rise to ad-
ditional interference effects which result in much slower oscillations
in Pon,

The lack of enhancement of Pi°" with the extra ionic channel
is primarily a consequence of the hyperthermal energies used in
this study. At these energies, the incoming sodium atom tends
to remain on the lowest adiabatic potential which corresponds to



the lowest ionic diabatic potential near the surface. Therefore,
most of the neutral flux is lost at the initial (outer) crossing of
the neutral and lowest ionic diabatic potentials. Since the ionic
states do not significantly couple, this ionic flux remains in the
lowest ionic channel until it crosses the neutral potential on the
outward path. As a consequence, most of the change in probability
on the outward path will again be in P, and P; at the outer
crossing. When the collision energy increases, this description
becomes less accurate. The neutral flux which survives the initial
crossing generally increases as the collision energy increases. As
this neutral flux increases, including the extra ionic channel should
become more important in determining the final values of the total
electron-transfer probability. However, for the energy range used
here, the extra ionic channel does little to increase P, This
suggests that including a third ionic channel would have practically
no affect on P" at these energies.

The most noticeable effect of the extra jonic channel is that
it gives rise to much slower oscillations in P, and P An analysis
of these oscillations clearly shows that they can be attributed to
the topological similarity of the two ionic channels. Since there
is a continuous set of energy levels for a metallic surface, it is
doubtful whether these slower oscillations are physically real. Of
interest would be to move the ionic potentials closer to each other.
This would give a better description of the continuum of surface
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states and provide information about how close the ionic potentials
have to be in order for the extra ionic channel to play a significant
role. The rapid oscillations present in the two-state results are
simply a consequence of having a neutral and ionic pathway and
could therefore be physically significant. Moving the ionic po-
tentials closer to each other could give some insight into this
possibility too.

Including the extra ionic channel does not improve the dis-
agreement between theory and experiment at the lowest energies.
We feel that this is most likely due to confining the transferred
electron to the metal cluster. In reality, the transferred electron
can travel many lattice spacings away from the collision zone
during the course of the collision. This suggests that the ionic
potentials of the initial and final stages of the reaction may not
be the same. It would be of interest to define a realistic pre-
scription based on the duration of the collision that would allow
these ionic potentials to change during the collision. This will be
the subject of future work.
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