Charge exchange in gas-surface collisions: Momentum transfer
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A description of near-resonant charge exchange in gas-surface collisions that includes
momentum transfer is presented. The surface is represented by a cluster of metal atoms. A
diatomics in molecules procedure is used to obtain the surface eigenvalues and eigenfunctions.
These are combined with those of the gas atom or ion to construct the interaction potentials and
electronic coupling terms. These provide the input needed to solve for the nuclear and electronic
motions in the common eikonal formalism which leads to a time dependent description of the
event. The formalism is applied to a sodium atom scattering from a W(110) surface. The surface
consists of five W atoms. The center W atom is allowed to move during the collision. Transition
probabilities are presented for various two and three electronic state systems and compared to the
case where the position of the center W atom remains fixed.

I. INTRODUCTION

In the experiments by Overbosch and Los," a hyperthermal
(30400 eV) beam of alkali atoms was scattered from a
tungsten (110) surface. Since the ionization potential of the
alkali atom lies close to the work function of the metal, one
would expect that transfers of an electron between the atom
and surface should occur. Indeed, the experimental results
indicated that most of the incoming neutral atoms were ion-
ized by the surface.

Due to the close proximity of the alkali ionization poten-
tial and the tungsten work function, the mechanism for this
type of electron transfer has been termed near-resonant
charge exchange.” From a theoretical point of view, the elec-
tron transfer results from a breakdown of the Born-Oppen-

heimer approximation (i.e., there are couplings between -

electronic states due to nuclear motions). As a result, more
than one electronic state is needed for the description of the
system. In the adiabatic representation, the transitions
between these states are caused by the nonadiabatic coupling
terms (electronic matrix elements of the nuclear gradient
operator). An alternative and often more useful representa-
tion is the diabatic electronic representation® where the tran-
sitions arise from the off-diagonal matrix elements of the
electronic Hamiltonian. ‘

A number of treatments for the multistate problem that
use a classical description of the nuclear motions have been
developed for gas phase collisions. Our interest has been in-
volved in developing a theoretical description of near-reso-
nant charge exchange occurring in hyperthermal energy
collisions of an atom with a surface. The solution of the elec-
tronic problem is based on using a small cluster of atoms to
represent the surface. A complete discussion of using such a
description is found in Ref. 4. Standard electronic tech-
niques result in well-defined interaction potentials and non-
adiabatic couplings which are used in the semiclassical com-
mon eikonal formalism® (see Sec. II) to obtain the final state
of the system. Electron transfer probabilities for a number of
two*®and three’ electronic state systems have been calculat-
ed for a sodium atom scattering off a W(110) surface. The
results showed an overall increase in the electron transfer
probability with increasing kinetic energy of the sodium
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atom. There was also an interesting oscillatory behavior of
the probability for all cases studied.

In this paper, a study of the electron transfer probability is
presented that takes into consideration the transfer of mo-
mentum of the sodium atom to the surface. In Sec. II the
formalism on which our model is based is briefly reviewed.
The electron transfer probability for some two and three
electronic state systems is presented and discussed in Sec. III
and compared to the case where momentum transfer does
not occur. The paper ends with a conclusion in Sec. IV.

I. THEORY

In this section a brief review of the formalism used to ob-
tain the transition probabilities is presented. As was men-
tioned in the introduction, the common eikonal method re-
quires the construction of the interaction potentials and
nonadiabatic couplings. If an electronic basis consisting of
the continuum states of the surface and the atomic states of
the incident atom is used, the potentials and couplings re-
sulting from this description become rather arbitrary due to
the great difficulty in calculating them from first principles.
In order to circumvent these problems, a small cluster of
metal atoms is used to represent the surface. This representa-
tion of the surface leads to interaction potentials and non-
adiabatic couplings that come from electronic procedures
that are based on first principles.

A five atom cluster with geometry corresponding to the
(110) face is used to represent the surface. The neutral sur-
face has five electrons, one electron per surface atom, and the
ionic surface has an additional electron on one of the cluster
atoms. A formal treatment of the electronic problem for the
neutral and ionic case that employs a simplified version of
the diatomics in molecule procedure® is given in Ref. 9. This
procedure is system dependent since it depends on the com-
ponent diatomics. It leads to fifteen eigenvalues and eigen-
functions for the surface, five of which are neutral and ten
ionic. The diatomic potentials needed in this approach and
the eigenvalues obtained from it are given in Ref. 4. These
eigenvalues and eigenfunctions are combined with the corre-
sponding sodium eigenvalues and eigenfunctions ( assuming
one valence 3s electron on the sodium atom) in the polyato-
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mics in molecule scheme'® to obtain the sodium surface in-
teraction potentials and nonadiabatic coupling terms. The
diatomic potentials and the method used to construct the
basis functions are also given in Ref. 4. This procedure re-
sults in fifteen interaction potentials, five of which are as-
ymptotically neutral and ten asymptotically ionic. In Ref. 4
these potentials are shown for the case that the sodium atom
approaches perpendicular to the surface and collides with
the center tungsten atom. This choice of trajectory main-
tains the C,, symmetry of the surface which reduces the
number of states that couple.

In our previous treatments of this system, the positions of
the surface atoms were held fixed, which resulted in a one-
dimensional problem. In the present case of momentum
transfer, the center tungsten atom is allowed to move during
the collision. Letting R, and R be the perpendicular posi-
tion of the center tungsten atom and the sodium atom, re-
spectively, relative to the plane of the surface, the nuclear
kinetic energy operator is

5 __ BB
™ 2m dR?* 2my 3RY,
where m and my, are the masses of the sodium and tungsten,

respectively. The center tungsten atom is held to the surface
by a harmonic oscillator potential of the form

Vho = KR ?w > (2)
where « is proportional to the force constant. The transition

amplitudes satisfy the time-independent Schrédinger equa-
tion

(T, +Vi+V,)=E0, (3)

where V¢ is the (nXn) matrix representation of the elec-
tronic Hamiltonian in the diabatic basis and ® = ®(R,Ry,)
is the (nX 1) column matrix of the nuclear wave functions.
In the common eikonal treatment the solutions of Eq. (3)
are written in the form '

) (N

¢) =Xe(i/ﬂ)$ , i (4)
where S(R,Ry, ) is the eikonal which is common for all elec-
tronic channels. Using Eq. (4) in Eq. (3), defining

1 (85)2 1 ( as )2

N _ (22 V=E, 5

2m \JR +2mw JRy + ©)

and neglecting the second derivative terms® of x results in a
first order differential equation for the y; with

Vex'Vig+ Vi, (6)

where y'y = 1 (see Ref. 4 for a complete analysis). Trans-
forming into time [P(t) = 3S(?)/IR, etc.; i.e., a momen-
tum] leads to

A 4C i vic=o, %)
i dt
where C is the complex (7 1) column vector of the time
dependent nuclear amplitudes. Equation (5) now becomes
P Py
2m  2my,

+V=E, (8)

which is in the form of the Hamilton-Jacobi equation with
V=C'ViC+V,,. ¢))

Defining the Hamiltonian as

P2 P}

H(RRy,C) =—+ + V(R,Ry,0), (10)
2m My
and letting
1 ; )
C=——(CT+iC!, (11)
J m Jj J
gives
dc’
Lo (12)
dt aC;
and
C!
ac, o' (13)
dt ac;

which are in the form of Hamilton’s equations of motion.
The trajectories R(#) and Ry, (¢) are as yet unspecified. A
convenient way of choosing these trajectories as well as P(¢)
and Py, (), which results in conservation of the total energy,
i.e., dH /dt = 0, is to require that

dR _oH _ P (14)
d 6P m’

4P _ _OH_ _ 9  ctyecy. (15)
dt aR aR

Rw _0H _ Pw (16)
dt 3Py 2my

and

dP

v _9H _ 9 (ctpicy_ur, . (17)

Equations (12)-(17) form a coupled set of first-order differ-
ential equations in time that self-consistently determine the
real and imaginary parts of the electronic amplitudes as well
as the nuclear “positions” and “momenta.” The positions
and momenta can not be strictly interpreted as the classical
position and momenta because they depend on an average
potential.

As is seen in Eq. (3), the common eikonal treatment is
formulated in the diabatic electronic representation. Since
the electronic problem is solved in the adiabatic representa-
tion, a transformation to the diabatic representation must be
made. In the following, the dependence of the nonadiabatic
coupling terms on Ry, is neglected, i.e.,

d:;(Rw>=(w 9

IRy,
where the ¥{’s are the adiabatic eigenfunctions and
s+« | ++) indicates an integration over electronic coordi-
nates only. This assumption allows one to considerably sim-
plify the calculation. The numerical accuracy of this as-
sumption is discussed in the next section. In this case the
diabatic eigenfunctions satisfy

\1:;)=o, (18)

d
— |¥¥) =0, 19
ax' ) (19)

where the superscript d denotes the diabatic representation.
The two representations are related by a unitary transforma-
tion A (¢ = W¥?4) so that Eq. (19) becomes
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a

JR + dR
which is a first-order differential equation for 4(R,R,) with
the boundary condition that 4 (R,,R,) = 1.

Results for various two and three electronic state systems
are presented in the next section. The transformation matrix
for both these cases have been given by Top and Baer!! (see
also Ref. 7). With these transformations the diabatic poten-
tial energy matrix is given by

Vi=A'V°4, (21

where ¥ “ is the diagonal matrix of the adiabatic eigenvalues.

dd (\w (20)

W")A =0,

lil. RESULTS AND DISCUSSION

A typical calculation is done by numerically integrating
Egs. (12)-(17) using a standard integration procedure. 2
The center tungsten atom is initially at the origin (Ry, = 0)
and at rest (Py, = 0). The initial electronic state of the sys-
tem is always the neutral channel. The probability of beingin
the electronic state j is

%:%(Cf+cf). (22)
Further details for the calculation are found in Ref, 4. The
integration is continued until the probabilities have stabi-
lized after the collision.

The approximation introduced in Eq. (18) assumes that
the couplings do not depend on the displacement of the cen-
ter tungsten atom relative to the origin. In order to deter-
mine the reasonableness of this assumption, electronic calcu-
lations were done over a range of perpendicular
displacements of the center tungsten atom. The calculations
showed that the eigenfunctions remained unchanged. The
eigenvalues varied but they all decreased by nearly the same
amount as the value of Ry, decreased. The sodium surface
interaction potentials for the various positions of Ry, were
similar in shape to the Ry, = O case, but were displaced in
energy somewhat due to the change of the surface eigenval-
ues. Since the eigenvalues (neutral and ionic) varied in a
uniform manner, the gas—surface interaction potentials rela-
tive to each other showed little change in the coupling re-
gion. Thus, the positions and magnitudes of the nonadiaba-
tic couplings were practically identical to the Ry, = O case.
Therefore, the approximation of Eq. (18) should have a mi-
nor affect on the results.

In these calculations, the couplings are modeled with
Gaussians. This simplifies the calculations considerably and
at the same time keeps the essential physics. The parameters
used in the Gaussians can be found in Refs. 4 and 7. The
value of the constant « used in the harmonic oscillator poten-
tial of Eq. (2) is 9.86 eV/A2 This value was determined
from a sum of pair potentials for an equivalent tungsten
atom on the (110) face of a 30 atom tungsten crystal. The
crystal consisted of two layers. The pair potentials of Ref. 13
were used which have the form of a Morse potential.

The energy transfer during the collision is approximately
40% over the entire range of kinetic energy. This corre-
sponds to the energy transfer in a head-on elastic collision
between two particles with masses of the sodium and tung-
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FiG. 1. Final values of the ionization probability, P, vs the initial kinetic ‘

energy of the sodium atom for the B, system: (a) with momentum transfer;
(b) without momentum transfer.

sten atoms. Deviations from this do occur at the lowest ener-
gies (less than 10eV) where the effect of the attractive well is
more important.

A. Two electronic state systems

There are three states, one neutral and two ionic, that
belong to the B, irreducible representation of C,, symmetry.
However, only two of these effectively couple.* This system
therefore reduces to a two electronic state system. The po-
tentials and couplings for this system can be found in Ref. 4.

The electron transfer probability P, versus the initial ki-
netic energy for the case of momentum transfer is shown in
Fig. 1(a). The corresponding results for the case of no mo-
mentum transfer are shown in Fig. 1(b). A comparison of
these cases shows a substantial decrease in P, when momen-
tum transfer occurs. This is not surprising since with mo-
mentum transfer the velocity of the sodium is less on its
outward path than on its inward path. At lower velocities,
the system tends to stay on the lowest adiabatic potential so
that the outward path contributes on the average less to the
electron transfer probability. Other comparisons worth not-
ing are that the oscillations of P, in Fig. 1(a) are more rapid
and the minimum values of P, are noticeably greater than
zero (20-50 eV). The rate of oscillation depends on a phase
that is proportional to a time integral of the difference of the
two diabatic potentials. Even though the eigenvalues and
eigenfunctions for the surface are the same for both cases,
the interaction potentials are different due to the dependence
for the case of momentum transfer on Ry, . Therefore, a dif-
ference in the rate of oscillation is to be expected. That the
oscillations in Fig. 1(a) do not go through zero is again a
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Fi16G. 2. Potentials and couplings of the 4, system for Ry, = 0: (a) nonadia-
batic couplings; (b) adiabatic potentials; (c) diabatic potentials.

consequence of the decrease in velocity on the outward path.
If the transition probabilities were the same for the crossings
on the inward and outward paths, one would expect that
destructive interference would lead to a total cancellation,
i.e., P; = 0. However, since the velocities on the paths are
different, which gives different transition probabilities, there
should be only a partial cancellation so that P, does not go
through zero.

Another example of a two state system is given by the
diabatic potentials ¥'{, and ¥4, of the 4, states. Previous
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FiG. 3. Final values of the ionization probability P, vs the initial kinetic
energy for the two state 4, system: (a) with momentum transfer; (b) with-
out momentum transfer.
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Fi6. 4. Final values of the ionization probability P" vs the initial kinetic
energy for the three state 4, system: (a) with momentum transfer; (b)
without momentum transfer.

- studies of this system showed a large tendency to transfer an

electron. The potentials corresponding to Ry, = Oare shown
in Fig. 2(c) and the nonadiabatic coupling, designated as
d4,, is shown in Fig. 2(a).

The results for the electron transfer probability with and
without momentum transfer are shown in Figs. 3(a) and
3(b), respectively. One notices the same general trends as in
the B, case. However, since the probabilities without mo-

_ mentum transfer attain values close to unity at rather low

energies { = 15 eV), the decrease due to momentum transfer
is not as noticeable as in the B, case.

B. Three electronic state systems

The states of 4, symmetry classification provide an exam-
ple of a three electronic state system. The adiabatic and dia-
batic potentials are shown for Ry, =0 in Figs. 2(b) and
2(c), respectively, and the nonadiabatic couplings for
Ry, =0 are shown in Fig. 2(a). The coupling between the
ionic states, d {;, is small. In the following, P, and P, are the
probabilities for being in the ionic states corresponding to
V4, and V4, respectively, and P, is the probability of being
in the neutral state corresponding to ¥'%;.

The ionization probability P** with momentum transfer
is shown as a function of the initial kinetic energy in Fig.
4(a). P is defined as the sum of the probabilities for
emerging in each ionic channel, i.e., P, 4+ P,. The results
with no momentum transfer are given in Fig. 4(b). Asin the
two state case, including momentum transfer leads to on the
average a noticeable reduction in P ", This is due, as in the
two state case, to the more adiabatic behavior on the
outward path. Although not shown here, the contribution to
P" by P, is substantially less than that of P,. This is in line
with previous studies done without momentum transfer’
which showed that most of the probability change occurred
at the outer crossing. These previous studies also showed
that the rapid oscillations characteristic of the two state case
were superimposed on much slower oscillations [Fig. 4(b) ].
These slower oscillations are due to the topological similar-
ity of the two ionic potentials.” The difference in traveling
the two ionic potentials varies much more slowly with ener-
gy than the corresponding neutral ionic case. Therefore, the
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FIG. 5. Final values of the ionization probability P*" vs the initial kinetic
energy for the three state B, system: (a) with momentum transfer; (b)
without momentum transfer.

phase varies less rapidly with the initial energy which gives
rise to the slower oscillations. The rapid oscillations in Fig.
4(b) are considerably damped in Fig. 4(a) and the reason
for this was discussed in the two state section.

A final example is provided by the states belonging to the
B, symmetry classification. The potentials and couplings are
similar to the A, system and are therefore not shown here
(see Ref. 7).

The results for P*°" with momentum transfer are shown in
Fig. 5(a) and without momentum transfer in Fig. 5(b). A
previous study’ of this system [Fig. 5(b)] showed a rather
large ionization probability so that the reduction caused by
momentum transfer is not as great. The rapid oscillations
that are superimposed on the slower ones in Fig. 5(b) are
almost entirely damped in Fig. 5(a). The rate of the slower
oscillations does not appreciably change with momentum
transfer since it produces little relative change in the ionic
potentials.

IV. CONCLUSION

The results presented here clearly demonstrate that mo-
mentum transfer can play a significant role in the electron

transfer probability. The major consequences of including
momentum transfer is an overall decrease in the electron
transfer probability and a noticeable change in its oscillatory
behavior. The reason for this is simply due to a decrease in
the velocity on the outward part of the trajectory. As a result,
the transition probabilities on the inward and outward paths
are not the same. Thus, on the average the probability for
electron transfer is decreased. This change in probability on
the outward path also results in less that total cancellation
for destructive interference so that the ionization probability
does not oscillate through zero. Since the electron transfer
probabilities decrease in a fairly systematic way, this tends to
support the idea that the outward path is more important in
determining the average probability for electron transfer. As
a final note, the oscillations seen here are simply a conse-
quence of having more than one electronic channel available
for the incoming sodium atom to emerge in, and it would be
interesting to see if they could be experimentally detected.
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