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A simplified procedure for obtaining matrix elements in the diatomics in molecules scheme is -
presented. An essential advantage in this approach is that it avoids partitioning the
antisymmetrizer. This allows the components of the valence bond wave functions, i.e.,
determinants, to be used as fundamental quantities and leads to a transparent method of obtaining
matrix elements of the atomic and diatomic Hamiltonians. Two examples, one with five electrons
and five nuclei and one with six electrons and five nuclei, are formally treated.

1. INTRODUCTION

As the interest in examining scattering processes for
many atom systems (e.g., a particle scattering from a solid
surface) has increased, there has been a growing need for a
method to easily generate realistic potential surfaces. The
application of electronic structure techniques (Hartree-
Fock, CI, CNDQO, etc.) to these systems is often not feasible
due to both the large number of electrons and the numerous
geometrical arrangements of nuclei for which the energy
must be calculated. One approach for generating potential
surfaces is the diatomics in molecules (DIM) scheme.' Here
information about the diatomic and atomic fragments is
.used to construct the potential energy surfaces of the polya-
tomic. Most of the formulations, however, are rather cum-
bersome and involve the generation of numerous transfor-
mation matrices.!~* For example, in some of the procedures,
each diatomic or atomic fragment Hamiltonian is, in gen-
eral, expressed as a product of nine matrices, four of which
result from the partitioning of the antisymmetrizer. For a
system of N nuclei, there are N (N — 1)/2 diatomic Hamilto-
nians and N atomic Hamiltonians so that a total of
9N (N + 1)/2 matriees need to be constructed. The dimen-
sions of these matrices are related to the number of valence
bond basis functions so that implementing these procedures
to rather complicated systems can become quite difficult.
Our formulation has no partitioning of the antisymmetrizer
so that the atomic and diatomic Hamiltonians are expressed
as a product of five matrices. This allows the determinants of
the atomic spin orbitals to be used directly as the fundamen-
tal quantities which leads to a very straightforward way of
obtaining matrix elements of the Hamiltonian between va-
lence bond structures. Although Steiner ef al.* have applied
a similar method to the triatomic H, system, here we present
the general approach for more complicated systems.

The DIM procedure was originaily introduced by Elli-
son’ and has been further examined by many other research-
ers.>”> Thorough reviews of this subject are given in Refs. 6
and 7. Faist and Muckerman® have recently compared the
various approaches and have addressed the mathematical
problems such as non-Hermiticity of the Hamiltonian and
overcompleteness of the basis set. We do not address these
aspects, but assume from the outset that the basis functions
form a linearly independent and complete set. The atomic
and diatomic eigenvalue problems are assumed not to intro-

* Alfred P. Sloan Research Fellow.

J. Chem. Phys. 81 (3), 1 August 1984

' 0021-9606/84/151355-05$02.10

duce any components that are orthogonal to the original
polyatomic valence bond basis set. These assumptions result
in a well defined linear algebra.

Rather than presenting a general development of the
DIM procedure, we instead place our emphasis on how to
obtain the matrix representations of the diatomic and atomic
Hamiltonians. Special emphasis is placed on minimizing the
introduction of new mathematical formalism. At the risk of
being a bit ambiguous in places, it should nevertheless aid in
providing a clear understanding of how the matrix elements
are obtained. A brief development of the formalism is given
in Sec. IL. The examples of obtaining typical matrix elements
given in Sec. III are taken from our ultimate interest in scat-
tering of atoms from metal surfaces. The first system, five
electrons and five nuclei, demonstrates the use of covalent
bond structures. The second system, six electrons and five
nuclei, provides an example of configuration interaction. A
discussion of the procedure is given in the final section.

Il. GENERAL FORMALISM

In the DIM scheme, the solutions of the electronic Ha-
miltonian are expressed in terms of a basis set of valence
bond wave functions. These basis functions are in turn writ-
ten as a linear combination of Slater determinants consisting
of spin orbitals centered on specific nuclei. If the valence
bond basis is linearly independent and complete, so is the set
of Slater determinants. The procedure below consists of two
stages. The first deals with the general form of a Slater deter-
minant in order to show how they can be reexpressed in a
convenient way. The second utilizes the linear independence
and completeness of the set in order to obtain a general
expression for the effect of a diatomic Hamiltonian on an
arbitrary determinant. Since the treatment for the atomic
Hamiltonian is the same, it will not be presented here.

The system consists of N nuclei labeled as 1,2,..., ¥ and
n electrons labeled as 1,2,...,n. Furthermore, nucleus 1 has n,
electrons labeled as 1,2,...n,, nucleus 2 has n, electrons la-
beled as n, + 1,n; 4 2,...n, + n, and so on. For convenience
of notation let 77; represent a simple product of atomic spin
orbitals centered on nucleus J, i.e.,

I, =i iy.dy, (1)

where i, is the k" spin orbital on nucleus i. With Eq. (1) an
arbitrary antisymmetrized product of n atomic spin orbitals
used in the construction of the valence bond basis functions
has the form
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)(=;!,,{Hl I,..11,}, (2)

where ,:1,, is the usual antisymmetrization operator includ-
ing the normalization constant 1y/n!and “ is used to indi-
cate an operator. For arbitrary nuclei / and j:

x=(— WA, (LI, T, _,
XIT, oD 0y TTN (3)
where p is the number of permutations needed to reorder the
orbitals. The electrons are labeled from left to right from 1 to

n. Since all possible orderings of electrons are contained in
Eq. (3), y can be rewritten as

1

—(— 1P ————A4, {11,
x = )”(n‘_Hj)! {|11.1T;
O/ A T AR 1 A/ (L (4)

where |...| represents a determinant. This is equivalent to Eq.
(3) because the (n; + n;)! terms contained in the determinant
differ only in the ordering of the electrons which does not
affect the final result of the n particle antisymmetrizer.
Equation (4) is of fundamental importance in this develop-
ment for it shows that the antisymmetrized product of Eq. (2)
can be reexpressed in terms of an antisymmetrized product
that contains a determinant of spin orbitals centered on arbi-
trary nuclei / and j. X

The DIM Hamiltonian which commutes with 4,, is ex-
pressed as

~ ” N A
H= EH,, —(N=-2) zl H, (5)
i>j i=

where H, ; is the Hamiltonian for the isolated diatomic (i)
which operates on electrons assigned to nuclei i and j and H,
is the corresponding atomic Hamiltonian. The diatomic va-
lence bond eigenfunctions of H; are expressed as linear com-
binations of ahtisymmetrized products of spin orbitals cen-
tered on i and j so that the effect of H; on |/, IT;| is well
defined. In fact, the result is a linear combination of determi-
nants of spin orbitals centered on i and with the coefficients
being linear combinations of the eigenvalues of the diatomic
(if). Assuming that the functions of the form of Eq. (2) form a
complete set,

Hy=(—17 }l‘,C'Z, (—1fy, (6)

where p, is the number of permutations needed to reorder y;
in the form of Eq. (3) back to the original order of the form of
Eq. (2) and the coefficients, C{, are determined from the
eigenvalue problem for the diatomic {ij).

Since the valence bond basis functions are linear combi-
nations of the determinants y,, the effect of H;; on them is
determined from Eq. (6). This gives a matrix representation
of ; in the space of the valence bond basis functions. The
matrix elements depend on the eigenvalues of the diatomic
(i) and the overlaps between the determinants y; . Applying
this procedure for each diatomic and atomic Hamiltonian in
Eq. (5) leads to a matrix representation for H in the space of
the valence bond basis functions. The Hamiltonian matrix
along with the valence bond overlap matrix gives the usual
secular equation whose solutions furnish the needed poten-
tial surfaces.

The essential result of this section is given by Eq. (6). It
leads to matrix elements of the diatomic Hamiltonians that
are expressed in terms of its eigenvalues and overlaps which
agree, as it should, with other formulations of this problem.
In contrast to some of the other formulations, expressing the
n electron antisymmetrizer as a product of a supplementary
antisymmetrizer times an antisymmetrizer for electrons not
on (ij) times one for the electrons on (i) is completely avoided.
Thus, functions of the form of Eq. (2) can be used directly
thereby avoiding some of the transformations (or matrices)
used in other formulations. Finally if /,; does not change the
number of spin orbitals on either / or j, thenp = p; and Eq. (6)
is further simplified.

. EXAMPLES

In this section, two examples are considered. The first
consists of five equivalent nuclei with five electrons and the
second consists of five equivalent nuclei with six electrons.
In constructing the linearly independent set of valence bond
basis spin orbitals one normally constructs the set of spin
functions first. In this case, we have chosen from among the
many available approaches to select spin functions using
Rumer diagrams. This will not be treated in detail and the
interested reader should consult Ref. 8. The set of spin func-
tions are chosen to have common eigenvalues of $?and 3’,
and are then combined with the appropriate space orbitals to
yield the linearly independent set of basis functions. For sim-
plicity, only one s orbital per atom is considered.

A. Five electron case

For this system, it is assumed that four of the electrons
form two bonds and the remaining electron has an a spin.
This corresponds to S = 1/2, M, = 1/2. The Rumer dia-
grams for this case are shown in Fig. 1. For example, the spin
function 8, corresponding to the first Rumer diagram is giv-
en by :

8, = 1/2{[a(1)8(2) — B (1)e(2)]
X [a(3)8(4) — B (3)a(4)]al5)], (7)

*>-—b o

NN
0

FIG. 1. Rumer diagrams for the five electron case with §= 172 and
M, =1/2.
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where the directed arrow going from 7 to j is represented as
1/v2[a(i)B (j} — B (i)a(j)]. The spin functions in Fig. 1 form a
complete set and, when combined with the appropriate
atomic orbitals, form a complete basis of valence bond spin
orbitals. The atomic orbitals centered on nuclei 1,2,3,4, and
5 are labeled as a,b,c,d, and e, respectively. To shorten the
notation an a and 8 spin on orbital x is designated as x and X,
respectively. The five basis functions are then given by
[¥; = As{labcde)f,} ]

@, =Clxi—x2— X3+ Xsh

¥, =Cly,+xs—Xs— X7}

¥, =Cly,—x:s— X7+ Xs}» (8)

W, =C{—xi+X2—Xs+Xol

Wy =C{—x1—Xat+Xe+ X0}
where C = 1/21/5! and the determinants y, are given in Ta-
ble I. The basis functions ¥, are the same that are used in the
more conventional approaches except that here we use the
determinants y; as the fundamental entities.

The effect of the H,’s operating on the y;s is needed.
The diatomic problem which is equivalent to H, {consider-
ing covalent structures only) is well defined, so that

)5 =120 + EDIij| + EY —EDEY O
and

H,\ifl = B4, (10)
where E (E ¥) corresponds to the ground (first excited) state
- of (§j). The expression for H; |ij| is obtained by replacing
with 7 and j with j in Eq. (9) and the function |ij| satisfies the
same eigenvalue problem as Eq. (10). The diatomic Hamilto-

nians are labeled with their corresponding atomic orbitals,
ie.,

f{ =i{ab +I’\{ac +i1ad +ﬁae +ﬁ1bc
VB, +H, +H,+H, +H,
—3H, +H,+H +H,+H,). (11)

The coefficients C ¥, in Eq. (6) are found from Egs. (9) and
(10). Since the H ;s do not change the number of orbitals on
either i or j, p = p, so that permutations need not be consid-
ered. For example,

H,, y,= 1/2{E*® |abcde| + E |abcde|}, (12)
where

E% =(E{+EJ) (13)
and

EY =(E{—EY) (14
Using Table I leads to

TABLE 1. Basis determinants for the five electron system.

i Xi i Xi

1 {abede| 6 laéc_de|
2 |ab tde| 7 |abed &|
3 @bcde| 8 |@bed €|
4 |Gbede| 9 |abed 2|
5 |abed 2| 10 {Gbede|

Hyp 1 =V2UES a +E? x5} (15)
The other results for fiab are similarly obtained and are giv-
en in Table I1. Assuming that orbitals centered on different
nuclei are orthogonal, the matrix elements of (¥, |H,,| v,
where (..|...) represents an integration over electronic co-
ordinates only, can be obtained. For example, using Eq. (8)
and Table II results in

R Ea—i Ea_b
HabW2=C[—2_X1+ > x:+ ES xs
a_ﬁ Eab
—E®y,— - — ] 16
2 Xe 2 X7 2 Xs (16)
Then from Egs. (8), (13), and (14},
(9,|H,,|¥,) = 1/4ES, (17)

where (¥,|%,) = 1/4. The determination of other matrix
elements (¥, |H;|¥,) follows in an analogous manner.

B. Six electron case

In this case, there are six electrons distributed among
five equivalent nuclei. Since each nucleus has one s-atomic
orbital, one of the nuclear orbitals must be doubly occupied.
The Rumer diagrams for the six electron case are shown in
Fig. 2 for the case S = 0, M, = 0. The actual spin functions
can be determined in the same way as in the previous exam-
ple. Since there are five nuclei, there are five orbital configu-
rations to be considered and they are given by, in the nota-
tion of the previous example, aabcde, abbcde, abccde,
abedde, and abcdee. These are then combined with the ap-
propriate spin functions. For example, in the configuration
aabcde, electrons 1 and 2 are paired so that this configura-
tion is combined with either 6, or ;. By analogous argu-
ments, abbcde is combined with 8, or 65, and so on. Carrying
through this procedure results in the set of basis functions
given in Table ITI with the determinants y7 defined in Table
IV. The superscript “a” in y7 designates which nucleus is
doubly occupied.

Asin the previous example, the next step involves deter-
mining the effect of the IAI,-,. ’s on the y?’s. There are two di-
atomic problems that need to be considered. The first con-
sists of a diatomic (ij) in which each nucleus is assigned one
electron as was illustrated in the previous example in Egs. (9)
and (10). The second case for the diatomic (i) consists of say
two electrons on nucleus i and one onj. This corresponds, for

TABLE II. Effect of the operation of H,, on ¥;.

-

Right-hand side of Eq. (6)

V2AE® x\+E? x5
V2AES x2+ E2 x4
12E% xs+E% )
IV2AE% xa+E2 1))
EPys
E;”Xc
1/4E% x:+E% x4
W2AE? xs+E% x4
Egbk’9
Egbl'm

O 00~ NV E W -

—
[=
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FIG. 2. Rumer diagrams for the six electron case with § = 0 and M, = 0.
M, = 172, to a valence bond function of the form
|iij| — | 7ij}|.Similarly if two electrons are on jand oneon,
then the valence bond function has the form |ijj | — |ij .

Assuming that the ground state is the sum of these functions
and the excited state is their difference:

Wi =C{|iij| = [iijl +|ijj] = li7) (18)
and
| Wi =Clliijl — [iijl —|ijj| +ijjl}s (19)
where
H,wi=Ei- wi, (20)

k=1.2,and E{~ < E§~. It follows from these relations
that
H,|iTjl =12 ((EY~ + E¥™)|iij]
. +(EY —EYTNijjl}- (21)
Similar results are obtained for the M, = —1/2case.
From the above results we can determme the effect of
the H,] sonthe ¥,’s. As typical example, expressions for H
¥, and H . ¥; are obtained. As in the previous example, H be
does not change the number of orbitals on either b or ¢ in ¥,
so that p = p, for all / in Eq. (6). Then from Egs. (6), (9), and
(10) and Tables II1 and IV:
TABLE III. Valence bond basis functions for the six electron, five nuclei

system. The normalization constant N is (2 y6!)~'. The determinants are
given in Table IV.

v,

-

Nt —x; —x; +xi)
Ni—xi—xi+x5 +xi)
Nt -xv: -3 +x3)

X —Xi+x+xi)
Ni—xs -1 +x3)

—Xi—Xe+xs+xe)
Nl - —xi +x4)
Nyi+xi—xi—xd)
Ny —xi—xs+xi)
Nyt +xi — x5 —xi)

© O 00N W e

—
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TABLE IV. Basis determinants for the six electron case.

Y a= a b ¢ » d e
1 |aabcde| |abbcde| |abctde| |abedde|  |abeded|
2 |e@bcd e| |abbede| |abeede|  |abedd €| |abedee|
3 |e@bed & |abbcde| |abecde|  |abedde|  |abed €@
4 |adbed e|  |abbede|  |abcede]  (abedde|  |abedee|
5 |azbcde|  |abbcde| |abccde| |abcdd e |abed ee|
6 laabede| |abbede| |abcede| |Gbedde| | bedee|
Ao, =X (E% i +E*
be ¥1— 7 { + X? + - ,1"3'

—E% xi ~E% yi —E% xj
—E" i +E% x5 +E* y2). (22)
Collecting terms and using Egs. (13) and (14) results in
H, ¥, =E*y, (23)

which is what one would expect since ¥, contains a bc bond.

The final case of determining H,, ¥, should help clarify
why it is necessary to keep track of the number of permuta-
tions needed to go from Eq. {2) to Eq. (3) and then back to Eq.
(2). For example, note that |agbc de| = — |aGebC d |. From
Eq. (21), one obtains the determinant |aeebt d | which when
the proper order is restored results in + |abcdeg|. Determi-
nants in Eq. (6) that contain two “a” orbitals are preceded by
afactor of ( + 1) whereas those that have two “e” orbitals are
multiplied by a factor of ( — 1). Then from Eqgs. (6) and (21)
and Tables I1I and IV

B9 =T (B3 +ES Wi+ (- WET —E¥ 1
—(E{T +EF T — (=~ WEF —Eg )
— (B +EF Wi —(—1)E* —E%* )ye
HETT +EF e+ (—WET™ —EF Q.
(24)
Using Table III results in
H, W, =1/2{(E*- + E=-)¥,
— (E¥™ — By ), (25)
Assuming that
W) =6, 8. (26)

then it is simple to determine (¥, |, i1 ¥1). General terms of

the form (¥, |H, 7| ¥y ) are obtained in an equivalent fashion.

IV. CLOSING REMARKS

The examples provided in the previous section provide
an illustration of how to apply the formalism developed in
Sec. II. The use of a matrix formalism was purposefully
avoided in order to add clarity and to emphasize the simpli-
city of this procedure. It is, however, straightforward to de-
velop this approach in terms of matrix notation. Letting

' ,
v, =121 b x; : (27)

and
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V= (¥)|¥)..|¥.))=xb, (28)
where
x =Ly x2)-x1)) (29)
and b is an {/ X m) rectangular matrix, then
WH, W = by H,xb, (30)
where
(¥
V.
pt= ¢ 2 (31)
(V|

An analogous definition holds for x'. Equation (30) is the
matrix representation of H;; in the basis of the valence bond

-functions. The general prescription for constructing these
matrices is: (1) determine the basis set of valence bond func-
tions. This gives the matrices x(x') and b(b"). (2) Define the
eigenvalue problem for all diatomic and atomic components.
(3) Construct the matrix representation of each Hamiltonian
(H; and H,) in the  representation via Eq. (6). (4) Add the
matrices together as in Eq. (5) which gives the matrix repre-
sentation of H in the space of x. (5) Multiply this matrix on
the right and left by band b', respectively. This matrix along
with the valence bond overlap matrix are the ones needed in
the secular equation.

It is somewhat instructive to qualitatively compare our
approach with the ones based on partitioning the antisym-
metrizer. From Egs. (5), (6), and (27), the effect of a diatomic
Hamiltonian on a valence bond wave function is

H ¥, = 3 bun 3= 1 Clix (32)

where p, + p, is the number of permutations necessary to
reorder y, from the form of Eq. (2) to the form of Eq..(3). The
corresponding expression from Ellison’s treatment [Eq. (25)
in Ref. 1] is

H;¥,=YE'S g, x.. (33)

This expression is somewhat appealing since the diatomic

eigenvalues enter the expression directly but the evaluation

of the coefficients g, is far from trivial and normally re-
quires a considerable amount of bookkeeping [see Eqs. {18)
to (25} in Ref. 1]. In contrast, the evaluation of the quantities
appearing in Eq. (32) is much more direct. The expansion
coefficients, b,,, are known from the outset, determining the
P, and p,, even for systems with many electrons is trivial, and

the coefficients C¥, are determined from the eigenvalue
problem for the diatomic (i/). The only difficulty in evaluat-
ing Eq. (32) is in knowing which determinants y, are generat-
ed from H; operating on y, . As demonstrated in the exam-
ples, this poses no great problem.

This approach to the DIM procedure is equivalent to
other formulations. That is, identical input information pro-
duces the same final polyatomic surface. In addition, the
procedure presented here can be expanded analogous to
what is done in other formulations. Spin-orbit interactions
can be included by appropriately modifying the atomic and
diatomic Hamiltonians. Naturally an expanded basis set
that includes the atomic states with the spin-orbit coupling
must be used. Directional bonding can be included in a man-
ner similar to that given in Ref. 3. Matrix elements of the
adiabatic coupling vector can be determined so that transi-
tions between states due to the breakdown of the Born-Op-
penheimer approximation can be described. As with other
approaches, difficulty arises when there are two or more di-
atomic states of the same symmetry. The coupling between
the states must be known.

In conclusion, it is hoped that this paper has provided a
straightforward approach to calculating potential energy
surfaces with the DIM method. The examples point out that
this approach can be formally applied to rather complicated
systems and thus has the capability for describing interac-
tion potentials between a surface and an adsorbed or collid-
ing particle. Work on these problems is currently underway.
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