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A generalized diffusion equation is derived from the Mori-Kubo general-
ized Langevin for a brownian oscillator subject to gaussian random but in
general non-markovian noise. This equation involves a time-dependent
diffusion function rather than a phenomenological diffusion constant. For
long times the diffusion function approaches a constant for overdamped
markovian oscillators ; only in the limit of extreme overdamping is the
phenomenological theory recovered.

A previously derived generalized phase space Fokker-Planck equation for
the brownian oscillator is shown to have incorrect short-time behaviour. The
difficulty is traced to a transient systematic component of the Mori random
force which is non-vanishing for classical lattices at 0 K,

Fokker—Planck and diffusion equations for the brownian oscillator are
derived from a generalized Langevin representation equivalent to, but distinct
from, that of Mori and Kubo. The random force in this representation lacks
the systematic transient component. The Fokker-Planck and diffusion
equations obtained from this alternative Langevin representation are thus
correct at all times.

1. INTRODUCTION

Recently we have presented generalized Fokker-Planck equations for non-
markovian free brownian particles and brownian oscillators [1]. These equations
are obtained as exact transformations of the generalized Langevin equation for a
brownian oscillator of mass m and frequency w

t
#(t)= —w?x(t)— | B(t—7)x(7) d7v+m 1 4(¢), (1.1)

0
derived by Mori [2] and Kubo [3]. The only restrictive assumption in our
derivation is that the noise term f(¢) is gaussian random. The main result of our

earlier work is the following generalized Fokker-Planck equation for the brownian
oscillator phase space distribution function P[x, x,; u, u,; ?]

0 o 0 ) )
{-8—t+u'§)'(_w2(t)x'5;} Plx, x,; u, uy; ]

=80) - (wP)+ 2L gy SR BT iy 2 (12)
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where @*(t) and B(t) are time-dependent frequency and friction functions
discussed elsewhere [1] and defined here in the Appendix. Notice that equation
(1.2} differs from both the phenomenological Fokker-Planck equation [4, 5]and the
often derived non-markovian Fokker-Planck equations with retarded kernels [6].
This paper deals with three issues. We first develop in §2 a generalized
diffusion equation (2.10) for the brownian oscillator position distribution
function from equation (1.1). [The generalized diffusion equation for a free
brownian particle has been considered earlier by Dufty [7]]. The generalized
diffusion equation is similar in form to the classical diffusion equation [4] but
involves a time-dependent diffusion function D(¢) rather than a diffusion constant.
We examine in § 3 the long-time behaviour of D(t). We consider D(t) for
three brownian oscillators ; an overdamped and an underdamped markovian
oscillator [(¢)=28 5(¢)] and a harmonically bound particle in a Debye lattice.
For the latter two oscillators (both are underdamped) D(?) is periodic for long
times with poles and zeroes on the real time axis. Thus a diffusion equation
with a constant diffusion coefficient is not approached asymptotically for these

cases. For the overdamped oscillator, D(z) - D, a constant, asymptotically and
t—>

an equation (3.14) identical in form to the phenomenological equation emerges.
The effective diffusion coefficient D, equations (3.15, 3.16), differs from the
Einstein result D= kp T/Bm except in the limit of extreme overdamping, w < 8.

Our second concern here is with a flaw in equation (1.2) which was not
noticed previously. We find in § 4 that equation (1.2) does not reduce properly
at short times to the Liouville equation for a free harmonic oscillator. This
defect arises because of an unexpected property of equation (1.1) which has
apparently not been noticed previously. The Mori random force f(¢) contains a
systematic transient component which () shifts the frequency w at £=0 to a short-
time frequency w, [see equation (1.3)], (b) causes f(¢) to be non-vanishing for
classical systems at T=0 K. The existence of this systematic transient term is
inconsistent with our assumption that f(#) in equation (1.1) is gaussian random ;
hence the defect in equation (1.1) at short times,

Finally, in § 5, we examine the Fokker-Planck and diffusion equations derived
from a generalized Langevin equation of the form [8-12]

#(t) = — wo? 2(t) + g Ot — 7)x(r) d1+'1; R(2). (1.3)

While equations (1.1) and (1.3) are equivalent, the individual terms in the
equations differ ; i.e. w#wy, O(t— 7)x(7)* — B(t— 7)x(r), and R()#f(2). R(2),
in particular, is rigorously gaussian for all times. Consequently the non-
markovian Fokker-Planck and diffusion equations derived from equation (1.3)
are valid for all times. For short times they correctly describe free harmonic
motion ; for long times they become identical in form to the equations derived
from equation (1.1). Equation (1.3), however, has been derived only for fully
harmonic systems and hence the generalized Fokker-Planck and diffusion
equations derived from equation (1.3) hold only for such systems.

2. GENERALIZED DIFFUSION EQUATIONS FROM THE MoRI-KuBo LANGEVIN EQUATION

We first consider the diffusion equation which is equivalent to the Mori
[2]-Kubo [3] generalized Langevin equation (1.1) for the case that f(¢) inequation
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(1.1) is gaussian noise. We require as a supplement to equation (1.1) the
fluctuation-dissipation result [2-3}

B(t)= <;(kt) T::’f _ (2.1)

Equation (2.1) is an expression of the detailed balance between energy loss and
gain processes which enforce the decay of fluctuations from thermal equilibrium.
Since the derivation of an equivalent diffusion equation from equations (2.1) and
(2.2) parallels our earlier development of generalized Fokker-Planck equations
[1], we will only outline the calculation here.

Solving equation (1.1) for the trajectory x(2) yields

(1) = Xlt o+ XD+ 71 [ it =N d (2.2)

In equation (2.2) x, and u, are the initial conditions of the oscillator and y,(t)
and y,(t) are brownian susceptibilities. From equation (2.2) one may verify

xx<t)=§’;i‘:—,, RORS (2.3)
and
xu<t>—3k 7 <x(t) . uo). (2.4)

To obtain equation (2.3) we have used the generalized equipartition result [1]
3kgT

mw Pl

(%2> =

(2.5)

Notice that the brackets ¢ > in equation (2.5) denote an average over the full
oscillator plus bath canonical distribution function ; hence w is a renormalized,
rather than a primitive, oscillator frequency. We will return to this point in
§4.

Since f(¢) is assumed Gaussian, the conditional probability distribution func-
tion for the particle position x given the initial conditions x,, u, is

. 3 1R [ 3
Plx; xo, uy; ’]={m} CXP{—m[x—xx(t)xo

—xu(z)uolz}, (2.6)

where [1]

An(t)= (2) + o ¥ (x.(2) - 1)]- (2.7)

3k T
m

The conditional probability for x given an initial thermal distribution of velocities
u, is found by averaging equation (2.6) over the Boltzmann velocity distribution.
This yields

Pixxgs = {t e { - s o], @
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where
3kgT

k
o(t)= mw?

[1—x2(2)]. (2.9)

A diffusion equation which generates P(x, x,; t) may be derived by the same
method used elsewhere [1] to derive the generalized Fokker—Planck equations.
A calculation gives

Z_f[X, Xo; t]=“'d'lnd)§x—(t)V.[xP(x, Xy 5 1)]+D(&)V2 P(x, x, 5 1), (2.104)

where

D(t)=3 [a(z) —20(2) 51“7’1“(_’_)]. (2.10 &)

Notice that equation (2.10 @) is identical in form to the phenomenological
diffusion equation for a markovian brownian oscillator [B(t)=2B5(t)] which is

(4]
oP w?
= [x, x, ; t]=—ﬂ- V . {xP[x, x,; t]}+DV2 P[x, x, ; ], (2.11)

with
kgT
D—Tg;n_' (2.12)
The coefficients in the generalized diffusion equation, however, depend on
time.

3. LONG-TIME LIMIT OF THE GENERALIZED DIFFUSION EQUATION

We next analyse the long-time behaviour of the generalized diffusion
equation (2.10 a). We consider three cases explicitly, a particle harmonically
bound in a Debye lattice, an underdamped markovian brownian oscillator, and
an overdamped markovian oscillator. For all three cases we examine the
quantity [see equation (2.10)]

_dln ()
C(t)= - (3.1
This is sufficient since
. kg T
,l.l..n:o D(t)--;n—w—2 C(t). (3.2)

Equation (3.2) follows from equations (2.9) and (2.10 b), since x,(t) and x,(¢)
vanish at long times. Combining equations (2.10 ), (3.1), and (3.2) thus shows
that for long times

P[x, X, ; 1]
o

Comparison of equation (3.3) with the phenomenological diffusion eqﬁation
(2.12) shows that according to the phenomenological theory

C(t)=F1 . (3.4)

We now examine C(t) for the three models mentioned above.

=C@)V . [xP[x, xo; t]]1+ D(t)V2 P[x, x, ; t]. (3.3)
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3.1. Debye oscillator
For the Debye oscillator the position autocorrelation function x,(t) is [1]

sin wql

X2(t)= . (3.5)

wot

where wy is the Debye frequency. Thus by equation (3.1)

lim C(t)= — w, cot wyt. (3.6)

=0

We see that for the Debye oscillator C(¢) never approaches a constant value and
the phenomenological diffusion equation is not approached assymptotically.
Along the real time axis D(t) is periodic rather than convergent and has poles and
zeroes.

3.2. Markovian underdamped osctllator

The asymptotic behaviour of C(t) and D(t) displayed by the Debye oscillator
is a general feature of underdamped oscillators. As a second example we con-
sider the markovian uncerdamped oscillator. For this case the generalized
Langevin equation (1.2) reduces to markovian form, since (¢)=285(t) and the

quantity
w ={w?— 1B, (3.7)
is positive and real. The autocorrelation function y,(z) is [4]
x(t)=exp (— }pt) {cos w, t+£— sin wlt}, (3.8)
1

and thus
sin w;t

2
lim C(z)=[w1=+i] (3.9)
— 4(01 B .
COS w,t+ =—- sin i
2w,

We see that C(t) does not approach a long-time limit. Rather it again displays
periodic behaviour with poles and zeroes along the real axis.

3.3. Markovian overdamped oscillator
For the markovian overdamped oscillator 8(¢) = B&(t) and the quantity

Bi=[1F - ’]%, (3.10)
is positive and real. The correlation function y,(?) is [4]
_ B B .
x,—exp( 2t cosh Blt+23: sinh B¢, (3.11)
and thus
lim C(t)=§—,31. (3.12)
t—xc

Hence by equation (3.2)
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Thus for overdamped markovian oscillators the coefficients in the diffusion
equation (3.3) approach constants and equation (3.3) becomes
oP[x, x,; t]

5 =%2v AxPIx, %,5 4+ DVIP,x,; 2], (3.14)

where the effective friction coefficient § is

B -1
Bt {5_ 31} . (3.15)
The effective diffusion coefficient is related to g by an Einstein relation ; i.c.
k
n? (3.16)

=2

Thus for overdamped markovian oscillators the classical equation holds. The
friction coefficient appearing in the diffusion equation (3.14) is, however, a
modified one, 8. The phenomenological theory is recovered, however, in the
limit of extreme overdamping B>w. Then expansion of equation (3.10) gives
B1=PB/2—w?/B+ ... and by equation (3.15)

lim f=8. (3.17)

/B0

Combining equations (3.14) gives the classical diffusion theory of equations (2.11)
and (2.12).

4. SHORT-TIME DEFECT OF THE GENERALIZED FOKKER-PLANCK EQUATION

We now turn to the second concern of this paper, the improper short-time
behaviour of the generalized Fokker-Planck equation (1.2). We will trace this
improper behaviour to counter intuitive properties of the Mori random force.
We will find that the Mori random force contains a systematic transient com-
ponent which is non-vanishing for classical systems at 0 K. This transient
component, which was implicitly neglected in our derivation of equation ( 1.2),
shifts the apparent oscillator frequency from w to w, at short times.

The subtle behaviour of the Mori random force may be seen most easily by
comparing the Langevin equations (1.1) and (1.3). This comparison is facilitated
by integrating equation (1.3) by parts. This gives [10]

)= —a? x(t)~ | Bt~ () dr+ 1 fo(r), (1)
where [10]
ﬁa(t)=%,;nL7?)> , (42)
and

fr(t)=R(2) — mBg(2)x(0) ; (4.3)

w is defined in equation (2.5).
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Equations (4.1) and (4.2) with equation (2.5) are similar (though not identical)
in structure to equations (1.1) and (2.1) with (2.5) and may be used to illustrate
the non-intuitive properties of the Mori random force.

Let us consider a hypothetical classical system at 0 K. Naively we would
identify f(¢) with random heat-bath motion and thus set fg(¢)=0. This then
yields for the short-time motion of x(¢) at 0 K

X(t)= — (1), (4.4)

- or

in wt
x(t) = cos wtx{0)+ me

x(0), (4.5)
w
for short times. 4
Our identification of fg(t) solely with heat-bath motion is, however, incorrect.
The random force R(2) has only heat-bath contributions and does indeed vanish
classically at T=0K [10]; fg(?), however, contains the additional transient
term Bg(2)x(0) which is independent of heat-bath motion. When this term is
properly included in equation (4.1), one finds that for classical lattices at 0 K the
short-time limit of equation (4.1) is

%(t)= — wgt x(1), (4.6)

which is expected from equation (1.3).

Thus the presence of the transient term in fg(#) which is non-vanishing at
T'=0 K shifts the apparent frequency w to a short time frequency w, Identical
behaviour occurs for the Mori random force f(¢), although the analysis is more
involved. The important point is that in our derivation of the generalized
Fokker-Planck equation (1.2) we tacitly assumed f(t)=0 at T=0K; this is
implicit in our apparently innocuous assumption that f(¢) is gaussian random.
Thus the transient term was neglected and the short-time behaviour of equation
(1.3) is incorrect.

This may be seen explicitly from equation (1.2) evaluated at T'=0 K which is

0 0 0
— —— 2z . .
{8t+u g (t)x . Bu} Plx, xy; u, uy; 2]

= Bl AUPD, Xo5 W g 2]}, (47)

This equation is equivalent to the Langevin equation (1.1) with’f(t): 0. This
may be easily seen since equation (1.1) with f(z) = 0 may be transformed to give

i(t)= — o(t)x(t) — B(2)x(2). (4.8)

This transformation is carried out in the Appendix. Equations (4.7) and (4.8)
are equivalent, since the first moment

<x(t)> = § dx duxP[x, x4 ; u, uy; ?] (4.9)

satisfies equation (4.8) and since higher moments vanish at T=0 K. Notice
that by equation (A 9), for short times equation (4.8) and hence (4.7) predict the
incorrect equation (4.4). Thus we have shown that our earlier derivation of
equation (1.2) tacitly assumes f(z)=0 at T=0 K and hence leads to incorrect
short-time behaviour.
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5. GENERALIZED FOKKER-PLANCK EQUATIONS VALID FOR ALL TIMES

Generalized Fokker-Planck and diffusion equations valid for all times may
be derived from equation (1.3). This is because the random force R(t) does not
contain a transient systematic term and may be rigorously taken as gaussian
random for all times. The derivation of the generalized Fokker-Planck and
diffusion equations parallels our earlier treatment [1]; hence we will only
sketch the calculation. We begin by solving equation (1.3) to give

()= (%o + O+, | X(t=7IR(r) d, BRNERY

where the Laplace transform of x(t), %(2), is given in terms of the Laplace
transform of 6(t), 6(z), by

(2)=[22+ w?~- O(2)]. (5.2)
Equation (5.1) implies
x(t)= x(t)x,+ )‘((t)u(rl—’lTz 'z.; x(t—7)R(7) d7, (5.3)
and also
(1) = ¥(2)%o+ %(£)up + x(0) L)+-- I ¥t—7)R(7) dr (5:4)

Evaluating equations (5.1) and (5.3) at #=0 gives

R 10
T(0)= , (5.5)
01 ‘
where
- X1 x(2)
T()= . (5.6)
X)) x@)
Evaluating equation (5.4) at t=0 and comparing with equation (1.3) gives
%(0)= — e (5.7)

From equation (5.4) and the gaussian random character of R(¢), the probability
distribution function P[x, x,; u, u,; #] may be evaluated and the generalized
Fokker-Planck equation constructed. The result is

{;:t+u -;;—wz(t)x a}P[x X,; U, ug; t]+3t)—— [uP]

or kB (t)%. (5.8)
In equation (5.8) .
d In det T(t)
B(t)= R TR (5-9)
and
&x(t)= x4(t) = X% () (5.10)

det T(2)
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Also
A(2)=B(2) + x(£)X(£)[1 — w2£(2)] - x(t)o[x(2) + x(2)B()] (5.11)

and
‘62 _wz d‘,2
B(t)={ (22 - w(:) {1—£(t)w2]“’}
+(1=w? D)X+ x(DB),  (5.12)

where _
&)= f!' x(7) d=. (5.13)

Using equations (5.5)~(5.12) we find that for short times equation (5.8)
reduces to

9 ¢ .2 P ; ; t]=0 5.14

a—t+u.&—w0x.5a [x, %45 u, uy; ¢]=0. (5.14)

Equation (5.14) is the Liouville equation for a free harmonic oscillator with the

correct short-time frequency w,. Thus equation (5.8), unlike equation (1.2),

has the proper short-time behaviour. For long times equation (5.8) simplifies
to

? & ) ?
[§+u .a—‘;(—a,z(z)x 'E} P(x, %o ; u, U, ; z)=3(z)E . [uP]

kg T o2 ks T ., o & 0
+73(l)a—u2P+;1:J—é w(t)—w}ﬁa—xp (515)
Notice that equation (5.15) is identical in structure to equation (1.2), which
has the correct long-time behaviour. In particular the equilibrium distribution
function

1 2 2 42
P[x, %,; u, u,; t]~exp(-m{%n+ﬂ'2—i}), (5.16)

satisfies both equations (1.2) and (5.15); hence they both properly predict
relaxation to equilibrium. We believe, in fact, that &%(t), B(t) are identical to
@¥%(t), A(t) in the long-time limit and hence equations (1.2) and (5.8) are identical
in the long-time limit. We have not proven this assertion, in general. We have,
however, verified it for the three models discussed in §3.

Finally, we turn to the generalized diffusion equation implicit in equation
(1.3).  Following our development in § 2 we find [cf. equations (2.10)]

oP[x, xo; t] _dIn x(2)

V. [xP(x, x,; t)]+D(t)V2 P[x,x,; t], (5.17)

ot - dt
h
e ds(t) d In y(t)
D(t)y=1% [7—260) T]’ (5.18)
with 6k, T iy
o) =22 [1—7 &) ]f(t)- (5.19)
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For short times, both equations (2.10) and (5.17) predict ¢P/ot=0. For long-
times equation (5.17) becomes

S % T 0y . (xPlx, %a5 0] +D(0)VH P, %o 1], (5:20)

ot
where
)= -2 h;f‘(t) : (5.21)
and
lim  D(¢) =I;:% C(). (5.22)

Notice that equations (3.1)~(3.3) are identical in structure to equations (5.20)-
(5.22). The difference is that C(t) is not identical to C(t). We believe that
these functions become identical as ¢—>o00. While we have not proven this
assertion, it holds for the three models considered in § 3.
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APPENDIX

Here we derive equation (4.8) from (1.1). Notice that this amounts to
transforming a non-Markovian Langevin equation (1.1) to a Markovian Langevin
equation (4.8) with time-dependent coefficients. We begin with equation (2.2)
with f(z)=0. This gives

X(2) = xa(2)%o + Xu(?)Y0- (A1)
Equation (A 1) implies
X(2) = Xa(2)%o + Xu(#)Yo, (A2)
and
R(t)= ¥2(t)%0 + Xu(t)Vo- (A3)
Let us define
(Xx(t) xu(t))
T(t)= . (A4)
%(t)  %(?)
From equations (A 1) and (A 2) we see
10 :
T(0)= ( ) (A5)
0 1
Comparing equations (A 3) and (1.1) gives
7(0)= —? (A6a)

and
%(0)=0. (A6b)
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Eliminating x, and u, from equation (A 3) using equations (A 1) and (A 2) gives
equations (4.8) with 4

B(t)= _d In ?iett T(t), A7)
and .
204\ _ ).(.u(t)).(:t(t) - Xz(t))?u(t)
aXty= det T(2) : (A8)
Equations (A 4) and (A 6)—(A 8) show
@%0) = w? (A9a)
and
A(0)=0. (A9b)
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