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The generalized Langevin equations for describing gas solid processes are recast as coupled
first order differential equations, which are soluble by standard classical trajectory techniques.
Energy transfer in rare gas/metal collisions is studied for three computationally simple models:
the heatbath Brownian oscillator (hBo) model which includes the effects of the lattice, the
Einstein or uncoupled oscillator model and the friction model. The hBo model correctly gives
the qualitative behavior of the energy transfer for all collision times; the Einstein model is co1-
rect for short collision times but not long ones; and the friction model is unreliable.

1. Introduction

Many-body dynamics must be realistically and simply included in any generally
useful theoretical approach to gas—solid processes. The generalized Langevin theory
developed elsewhere [1—4] provides a practical and flexible computational method-
ology for handling the many-body problem in gas—solid dynamics within the ap-
proximation of classical mechanics. Our purposes in this paper are to outline the
main features of the Langevin method, to show clearly how a calculation may be
performed, and to apply the technique to a numerical study of rare gas—metal
collisions. .

Our plan here is as follows: In section 2.1 we review the basic ideas underlying
the generalized Langevin method. In section 2.2 we show how the terms appearing
in the Langevin equation may be computed from the mode density of the solid.
Section 2.3 and the Appendix deal with methods for reducing the Langevin
equation to an effective few-body classical trajectory problem which may be solved
by standard techniques. The key idea is that most of the solid may be modeled by
one or a few optimally chosen Brownian oscillators. Section 2.4 is concerned with
explicit evaluation of the quantities occurring in our theory for the Debye mode
density. In section 2.5 we describe three simple solid models which emerge as
natural approximations to the full generalized Langevin dynamics. Collisional
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results predicted by these models are compared in section 3 as part of our numerical
study of rare gas—metal scattering. Finally, in section 4 we summarize our conclu-
sions.

2. Generalized Langevin formalism
2.1. Langevin transformation

Underlying the Langevin approach is the fact that only a few (~1—6) of the

many (~1023) solid atoms are directly struck by the incident gas particle in a gas—
solid collision. The struck or primary oscillators are, however, coupled to the re-
mainder of the lattice which functions as a heatbath. The many-body problem in
gas—solid dynamics, of course, arises from the many-body character of the heat-
bath. ,
Our basic idea is that the detailed motion of the heatbath need not be explicitly
followed since only the influence of this motion on the collision is observable. This
influence depends on only rather gross features of the heatbath’s complex dynamics
and thus may be simply modeled. Thus we solve the many-body problem by
simulating the heatbath’s influence rather than following its irrelevant motion.

To implement these ideas we transform the original many-body Newton equa-
tions of motion to an effective few-body form [1—4]. These new equations of
motion involve only the dynamics of the gas particle and the struck oscillators ex-
plicitly. They contain, however, the heatbath influence and thus properly include
the many-body effect. The advantage of the transformed dynamical equations is
that they involve only a few degrees of freedom and may be solved using numerical
methods familiar from conventional classical trajectory calculations [5], section 2.3.

The transformation to effective equations of motion may be carried through -
exactly for harmonic solids to yield (here we assume, for simplicity, a single struck
oscillator in the primary zone)

1 4
mr(t) = —mwir () — V, W, R) +m f Q- 1) r(r)dr +£(¥), (2.12)
0
MR() = —VrW(r, R), (2.1b)

where 7 = (x,y,2) and R = (X,Y,Z) are the positions of the struck solid atom and the
gas atom respectively, m and M are their respective masses and wg is the root mean
square normal mode frequency of the $olid. The coordinate system is oriented so
that the z (or Z) axis is perpendicular to the surface and the x and y (X and Y) axes
are in the plane of the surface. The potential W(r,R) describes the interaction
between the gas and solid. While it depends on the instantaneous positions of only
the gas and primary lattice atoms, it may depend on the equilibrium positions of
many solid atoms.



B.J. Garrison, 8.A. Adelman [ Generalized Langevin theory 255

If the last two terms in eq. (2.1a) are dropped, the resulting equation describes
scattering off one atom in an Einstein (uncoupled oscillator) solid with characteristic
frequency wyq. The final two terms in eq. (2.1a) thus account for the influence of
the heatbath.

The qualitative nature of the heatbath terms in eq. (2.1a) can be best understood
if the solid is assumed to be at a temperature T; =0 K. The random force or noise
term f(?) is proportional to+/T;, so at T = 0 K it vanishes. If the atom in the primary
zone is displaced its energy will randomize and eventually dissipate throughout the
solid. This dissipation is accounted for by the damping kernel ©(¢). As the solid
temperature T is increased this dissipation continues; however, at finite solid tem-
perature the random force f(z) allows energy flow from the heatbath to the primary
atom. The dissipative and random forces are balanced so as to maintain the thermal
equilibrium of the primary oscillators. The quantitative expression of this balance
is the second fluctuation-dissipation theorem [3]

F()fO) = mksT, [ ©(r)dr, 22)
t

where ( ) denotes a thermal average over heatbath initial conditions.
2.2. Connection with mode density

We next relate wy, ©(7), and f(7), the basic quantities appearing in the GLE (2.1),
to the mode density p(w) of the full solid. The relationships are particularly simple
for isotropic solids and we restrict ourselves here to this case. The primitive frequ-
ency wo is simply the root mean square frequency

wg = (f w? p(w)dw)!/2. 2.3)
0

The relationship between ©(7) and p(w) is conveniently established by intro-
ducing a spectral density o(w) characterizing the heatbath. This is dgﬁned by

&)= [ w™ ow)sinwrdw. (2.4)
0

We analogously define the susceptibility X(7) of the primary atoms as

X(1) = f w™ ! p(w) sin wt dw. 2.5)
0

Here we have assumed that the solid is isotropic so that the tensors (¢) = x(r)1 and
(1) = (1)1 are diagonal with all the diagonal elements equal. The following results
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could also be derived for a general tensorial x(¢) (or ©(r)). As derived elsewhere 3]
x(?) and ©O(r) are related through their Laplace transforms, x(z) and ©(z) respect-
ively, viz.,

O@)=22+wh-x '), @.6)
Using eqgs. (2.4)—(2.6) one obtains the relationship [6]
o(w) = p(w)/IxGw)i?. 2.7

Thus by knowing a mode density p(w) for the entire solid one can obtain o(w)
(egs. (2.7) and (2.5)) and then obtain &(¢) from eq. (2.4).

The noise source f(¢r) is also generated from o(w). The noise is written as a
Fourier transform [6] ’

f(f)=7r_lfmaxdwlf(w)lcos[wt—ﬁ(w)], (2.82)

0

where wmqy is the maximum normal mode frequency of the solid. Evaluating the
integral in eq. (2.8a) by Legendre—Gauss quadrature gives

Q
=1 wmax A_'Z‘,l Wl Fcon)l cosfwnt — 8(wn)], (2.8b)
where W, and x = wy/wmayx are the Legendre—Gauss weights and points respect-
ively. The expansion (2.8b) allows convenient Monte Carlo sampling of f(¢). The
phase shift §(w,) is randomly picked from a uniform distribution with 0 < §(w)) <
2n. The Fourier component |f{w,)| is sampled from Gaussian distribution with
variance Ay, where [6]

20mkpT (w 2 1/2
Ak={ B ( ““”‘) w;lgxa(w;\)] ) (2.9)
Wy wy

By randomly picking §(cw,) (uniform distribution) and |f{w)| (Gaussian distribu-
tion) the initial conditions of the heatbath are sampled. The fluctuation-dissipation
theorem (eq. (2.2)) is satisfied and thermal equilibrium maintained by determining
both ©(¢) and f(¢) from the same spectral density, o(w).

One limitation of this scheme must be mentioned. The auto-correlation function
(F(£)f(1)) computed from eq. (2.8b) will not satisfy the fluctuation-dissipation
theorem for times ¢ — ¢ >7=Q wp'. We may avoid this pitfall by choosing Q
such that 7 is much greater than a collision time; typically Q = 48. Generating an
f(#) from eq. (2.8b) with Q =48 before each trajectory (see section 2.3) is inef-
ficient. Several methods can be proposed to circumvent this problem. The random
force f(¢) is an external force on the primary lattice and thus may be separately
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computed and stored. In practice a few J(#) strips valid for long times are generated
at fixed time intervals and permanently stored. These strips are then randomly ac-
cessed and the appropriate number of time steps are stored in the computer for use
during the trajectory calculation. If Q were infinite, randomly accessing a single
(infinite) f(7) strip computed from a particular set of 8(w,) and |1 (wy)! would be
equivalent to sampling all §(w,) and | f{wy)I. This is not rigorously true for Q
finite; finite strips are biased by the initial conditions. This biasing can be minimized
by sampling from several strips.
Alternately eq. (2.8b) can be expanded as

Q
F® =1 wmax )?1 Whlf(wx)l {cos(wx 1) cos[8(wy )] + sin(wy #) sin [8(eo]} .
(2.8¢)

The functions cos(wyt) and sin(wyt) are computed and stored at fixed time inter-
vals. Before each trajectory |f{cw,)| and 8(w,) are sampled and a noise function
f(2) is computed from eq. (2.8¢). This procedure eliminates the biasing problem
inherent in the strip method described above. Moreover, it is quite efficient since
the functions cos (wyf) and sin(w,f) need only be computed once. Both methods
were employed in this study providing a useful numerical check.

Finally, in discussion of models (section 2.5) a friction constant § and an effect-
ive frequency £ are introduced. These are [3)

B=lim dx~1(z)/dz, (2.102)
20
Q%=1lim 3~ !(z), (2.10b)
z—0

and thus may be related to the mode density through eq. (2.5).
2.3. Method for dynamics

For ease in solving the GLE (2.1), the damping kernel ©(r) computed from eq.
(2.4) is fit to damped sine functions [6};ie. ~

N
o) = P Cy, exp(—7af) sin(@x ), (2.11)
=1

where C, 7, and &, are determined by least squares fitting the expansion eq.
(2.11) to a representation of ©(f) obtained by numerically integrating eq. (2.4).
The damped sine representation of ©(t), eq. (2.11), has several advantages. First,
(see below) it allows us to reduce the integral-differential Langevin equations (2.1)
to a set of first order purely differentjal equations of the type familiar from conven-
tional classical trajectory studies. These first order equations may be solved by
standard numerical integration algorithms [7). The physical reason for this simpli-
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fication will become clear in our discussion of models in section 2.5 and the Appen-
dix. Second, the damped sine expansion for ©() decays to zero at long times; un-
physical recurrences which occur for many approximate representations of lattice
susceptibilities [6] do not arise. Third, the damped sine representation gives a good
fit to ©(z) for short times, even for N = 1. Since ©(¢) is small and oscillatory at long
times, we believe that only its short time behavior importantly influences trajectory
averaged collision dynamics. This is certainly true for the relatively short duration
processes studied here. Finally, the fit to ©(r), eq. (2.11), can be made increasingly
accurate by including more terms in the sum.

Employing a finite truncation of eq. (2.11) for ©(r) amounts to using a modified
o(w) which is slightly different from that employed in the initial calculation of the
exact ©(¢). Using the general relationship [6]

o(w)=—21"" w ImB(iw), (2.12)

which follows from eq. (2.4), and using eq. (2.11) one finds that this modified
spectral density ofw) is given by

J Cr oy
of(w)=4n"w22 5 A ;; -
A= (wytyy— wi )y A w

(2.13)

To guarantee thermodynamic consistency, we employ ofw) in our sampling of
J(t); ie., in eq. (2.9). Our approximation for ©(t) also prescribes an approximate
friction parameter f, eq. (2.10a), given by

Y G v
=22 2L (2.14)
A=1 (vy + wy)

The short-time behavior of the primary lattice atom which is described by the
frequency wy is independent of the particular approximate description of the heat-
bath adopted. Hence, we may choose wy as before (from eq. (2.3)) using the exact
p(w), despite the fact that we are employing an approximate representation of
o(w). We also employ the exact £, eq. (2.10b), since the correct approximate §
typically differs only slightly.

The functional form chosen for ©(r), eq. (2.11) greatly simplifies the problem
of solving the GLE. If ©(¢ — 7) may be written as a sum of functions separable to ¢
and 7, then the GLE can be written as coupled first order differential equations
soluble by standard classical trajectory techniques. A procedure based on this idea
was presented by us elsewhere [6]. We adopt here, however, a related but different
procedure due to Doll and Dion [8] which is computationally more efficient 91.
Using this method, the GLE may be recast as

N
P(E) = —medr(t) — V, W, R) + m AZ_)lzg(r) +f(), (2.152)
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o) =p()im, (2.15b)
P()=—-VgW(r, R), (2.15¢0)
R =P(OM , (2.154)

. d ?
R@O=—{ [ Cxexpl-ma(s = D]sinln(t - N} r(r)dr)
0
= -y (1) + SR (), (2.15¢)
. d !}
B =2 {[ Grexpl-m(t = D] cosla(t - Dlr(r) dr)
0

= Cyr(t) — IX (1) — (1), (2.156)

which are of the desired first order differential equation form.

2.4. Debye model

The above derivations are completely general and can be used if one has either
p(w) or o(w) [10]. For the calculations studied here, we use the bulk continuum
or Debye model. Work is currently under way to include surface phonons within the
continuum model. For the Debye model the normal mode spectrum is

p(w) = 3wp>w?n(w - wp), (2.16)

where n(x) is the unit step function, wp = kgOp/h, and Op is the Debye tempera-
ture. From egs. (2.7) and (2.16)

0(w) = 3wp w?n(w - wp)IRGW). @17
The Laplace transform of x(¢) for the Debye model may be derived from egs. (2.5)
and (2.16) to give {3]

X@) = 3wp>[wp — 2 arctan(wp/z)) . (2.18)

Using eqs. (4.6.16) and (4.6.7), ref. [11], one obtains
1%(w)1? = 9wp®{[wp — w arccoth(w ™ wp)} 2+ G 1w)?}. (2.19)

Egs. (2.17) and (2.19) determine the Debye model o(w).

The damped sine representation for the Debye model ©(¢) is obtained by
numerically integrating eq. (2.4) with o(w) from eqs. (2.17) and (2.19) and then
fitting at short times the numerical ©(z) to the expansion eq. (2.11). The one term
fit used here is given in table 1.

The quantities wp, eq. (2.3), and B, eq. (2.10a), may also be computed. Using eq.
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Table 1

Parameters for @(z)

N C\lwiy 2 wp Gr/wp
1 0.16269 0.23599 0.59860

(2.16) one obtains for wg
Wg = \/(—‘5(01). (2-20)

The friction coefficient fp and effective frequency S2p for the Debye model are
derived from eqs. (2.6), (2.10), and (2.18) as

Bo=%mwp, (2.21a)
Qp=wp/V3. (2.21b)
2.5 Solid models

Three physical models for the solid may be derived as simple approximations to
the full GLE formalism: the Einstein model, the friction model, and the heatbath
Brownian oscillator model. For an Einstein solid the last two terms in (2.1a) (the
many-body terms) are neglected. The only temperature effects come through the
initial conditions of the oscillator (section 3). The Einstein model should be valid
when the collision times are very short because the effect of the heatbath on the
collision is not felt instantaneously. However, the Einstein model will break down
with longer collision times.

For processes which are long on the timescale of a solid vibration, a local friction
approximation [2,3] to the generalized Langevin dynamics may be reasonable.
Within this approximation the gas—solid Langevin equations of motion (2.1) become

(3]

mr(t)= —mQ2r(t) — V, W(r, R) — mpr(r) + £(1), (2.22a)
MR(®)= — Ve W(r, R), (2.22b)

where § is found from egs. (2.10a), (2.14) or (2.21a). This states that the struck
solid atom instantaneously feels the effects of the heatbath. In contrast to the Ein-
stein model, the friction model will fail for short collision times.

By expressing ©(f) as an expansion in damped sine functions, eq. (2.11) and
truncating the expansion at one term, a simple physical model emerges; the heat-
bath has the characteristics or response of a Brownian oscillator. This heatbath
Brownian oscillator model is qualitatively correct for all times. Quantitatively, it is



B.J. Garrison, S.A. Adelman [ Generalized Langevin theory 261

valid for short times; the quantitative accuracy for long times requires further study.
An important advantage of the heatbath Brownian oscillator model is great com-
putational simplicity. Solving eqs. (2.15) with N=1 is computationally equivalent
to a three-particle classical trajectory problem. This reduction in labor is achieved
because we have replaced the many-body heatbath by a single damped oscillator.
Thus, in effect, we are modeling the solid by a two atom effective system (see
Appendix) which is why our trajectory problem reduces to a three-body calcula-
tion. The results derived from these three models will be discussed in section 3.

3. Description of the calculation
3.1. System studied

For the calculation presented here, we have used parameters appropriate for rare
gas/metal systems. For some of the studies, a repulsive potential of the form
W(r, R) =D, exp[-a(Z -~z - r.)], 3.1)
is used. The values of Dy and r; are unimportant as they are merely a shift in the Z
axis origin. (They will affect Rpqx in eq. (3.3).) A value of o= 1.8 A7 was used.
Since the repulsive potential is only going to be used for sample studies, a, is the

same for all masses studied so as to observe the effect of changing the mass. In addi-
tion, an attractive Morse potential was used where

W(r, R) = De{exp[—2a(Z — z — r¢)] — 2exp[-a(Z — z - re)l}. (3.2)

The values of the attractive pdtential parameters are given in table 2.
3.2. Selection of initial conditions

To simulate gas—solid scattering one integrates the GLE (2.15) since the potentials
given above, egs. (3.1) and (3.2) are only one dimensional, horizontal momentum
will be conserved. Thus only the initial conditions for the equations of motion in
the perpendicular or Z direction are given. The initial energy E; of the gas particle

Table 2
Potential parameters
System Parameters

De (K) a (A~ 7e (A)
Ne/Ag 112.02 1.8b 3.01b
Ar/Ag 417.82 1.69 b 3.27b
3 Ref. [12].

b Obtained by the same procedure as given in Lin and Wolken {13], only « is obtained from a
fit of the Morse potential to a Lennard-Jones (6, 12) instead of a LJ (3, 9).
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is established at the beginning of the calculation. For the gas atom, the initial con-
ditions are

Z(0)=Rpmax * EPTp/M, Pz(0)=-P, (3.3)

where { is a random number between 0 and 1, P = \/2MEj, Tp = 27/ wq is the period
of the struck oscillator, and Ry, is some distance such that

'37(’, RNZ:Rmax =~ (.

The momentum of the gas atom could also be selected from a Maxwell—Boltzmann
distribution but that would require Monte Carlo averaging another variable. For
the struck solid atom the initial position is the equilibrium position

2(0)=0, 3.4)

and the initial momentum is randomly sampled from a Gaussian distribution with
the variance equal to «/mkpTg, where the solid temperature is given. The initial
positions are allowed to thermalize before the gas atom enters the interaction
region; thus they actually have initial values other than 0. The auxiliary variables
have an initial value

LO)=0, If(0)=0. (3.5)

As in most classical trajectory techniques several of the initial conditions must
be Monte Carlo averaged, in this case they are p(0), and f(0). At T,=0K,p(0)=0
and f(0)=0, so that there are no Monte Carlo averages. For an Einstein solid all
temperature effects are in the initial momentum of the struck atom, since there is
no noise source f(1).

3.3. Results and discussion

We have studied the energy transfer for rare gas/metal systems for each of the
models discussed in section 2.5. The initial calculations were done at a solid tem-
perature of Ty=0 K as there are no Monte Carlo averages of the initial solid
momentum and of the random force to perform. That is, there is only one traject-
ory or solution to egs. (2.15) for a given initial gas energy £j. A repulsive potential
eq. (3.1), was used to study the effects of varying the ©p, &y, M and T,

The results from the heatbath Brownian oscillator (hBo) model are obtained by
integrating egs. (2.15) with the gas particle initial conditions as described in section
3.2. The parameters for ©(r) in table 1 were obtained by using the Debye density of
modes eq. (2.17) to generate a short time ©(¢) from eq. (2.4) and fitting to the ex-
pansion eq. (2.11). The primitive frequency wyq is from eq. (2.20). By setting (1) =
f(2) = Oand then integrating eqgs. (2.15a—d), the Einstein model results are obtained.
The same primitive frequency wy is used in the Einstein model as the hBo model.
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Fig. 1. AFE versus Ej for rare gas/Ag scattering. A repulsive interaction potential is used with
ar = 1.8 A~1, All curves are for the heatbath Brownian oscillator model,

Finally for the friction model, eq. (2.22a) is substituted for eq. (2.15a) with § taken
from either eq. (2.14) (B¢) or eq. (2.21a) (Bp). Eq. (2.21b) is used for the oscillator
frequency 2.

Fig. 1 displays the energy transfer AEnp, as a function of incident gas energy E;
for He/Ag, Ne/Ag and Ar/Ag scattering using an Ag surface Debye temperature
Op = 151 K. Also plotted are AE versus E; curves for Ng/Ag scattering with Op =
350 and 550 K. At high energies (~10° K) the curves approach the hard sphere
limit of

AE/[E; = 4mM/(m + M)* (3.6)
From the family of Ne/Ag curves one can see that at constant Ej, the energy trans-

fer decreases with increasing ©p. A larger ©p corresponds to a stiffer effective
spring, thus making it more difficult to transfer energy.
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The magnitude of the energy transfer is very sensitive to the parameters O®p, ar,
M, and T and to the model, hBo, Einstein or friction, being used. However, ratios of
energy transfer (e.g. Rg = AEEjnstein/ AEnBo) should basically depend only on the
dimensionless quantity wpt., where . is the collision time. This quantity wpf. is
really a ratio of the collision time to the response time 7p of the solid (wp = 271/Tp),
thus wp?, measures the interaction of the heatbath with the collision process. For a
repulsive potential the collision time is naively defined as the range of the potential
1/a, divided by the incident velocity of the gas atom, viz.,

te = (M2E)"? oy . (3.7)

As discussed in section 2.5, the hBo model is qualitatively and quantitatively
accurate in describing energy transfer for all collision times. (For really long time
processes such as diffusion and desorption this assertion must be tested.) The Ein-
stein model is rigorously accurately in the limit of short collision times but will fail
for long times. The friction model is derived as an approximate solution for long
collision times but this is not an exact derivation. Thus, plots of AEqogel/AERBo
should display the time domains in which each model is valid.

The ratio plots for the Einstein model and the friction model using ¢ and fp are
shown in fig. 2. Each frame of fig. 2 actually displays 9 curves. They correspond to
R, Reand Rp for various values of ar, ©p and M. The curves of each family, e.g.
Rg are nearly superimposable, with the largest discrepancies appearing when the
mass is varied (fig. 2c). As discussed in section 2.5, the Einstein model should be
valid for “short” collision times, when the struck oscillator does not have time to
feel the heatbath. This is verified in fig. 2, at small t;, Rg =~ 1 while for long colli-
sion times Rg = 0. Short collision times can only be thought of with respect to the
response time of the solid, i.e. 7p. A smaller Tp or larger wp means a greater speed
of sound, and thus the lattice responds more quickly to the impinging atom, so
that “short” is a relative term. For the friction models on still needs to think in
terms of the ratio of #. to rp. Again, the behavior is nearly reproducible for dif-
ferent systems. Neither the results from using s of eq. (2.14) or fp of eq. (2.21a)
are quantitatively accurate for any time regime. In addition, the two B’s predict dif-
ferent behavior. The friction model is unreliable in describing energy transfer.

Fig. 3 displays AE versus E; curves for Ne/Ag scattering with the attractive
potential of eq. (3.2) for the hBo, Einstein and two friction models at two surface
Debye temperatures. The same basic trends appear as in the repulsive potential. The
Einstein and friction models are again incorrect. At high collision energies (or short
collision times) the hBo and Einstein results approach the hard sphere limit of eq.
(3.6). As Op increases the energy transferred is less and the effect of the heatbath
becomes more important. We have also plotted ratio curves in the same manner as
fig. 2 for the attractive potential. The basic trends are similar but since the families
of curves are not as superimposable, these graphs are not presented here. Although
the ratio results are not as superimposable for the attractive potential as for the re-
pulsive potential, it is still wp?, that is the essential parameter in decribing energy
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Fig. 2. Ratios of AEp,del/AERBo s a function of wpte (E = Einstein, f = friction model using

B¢, D = friction model using gp). The system common to all the graphs is Ne/Ag with @p = 151
Kando,=1.8A-1(Ne, 151 K, 1.8 A—1),

(@) (———) Ne, 151 K, 1.0 A=1; (— —) Ne, 151 K, 1.8 A—1; (cce--- ) Ne, 151K, 3.0 A—1.
(b) (—~—) Ne, 151 K, 1.8 A~Y; (— —) Ne, 350 K, 1.8 A=1; (------ )Ne, 550K, 1.8 AL,
(¢) (———)He, 151 K, 1.8 A~};(— —) Ne, 151 K, 1.8 A—1; (----- ) Ar, 151 K, 1.8 A—1.

transfer regimes. Note that at low collision energies, the Ne traps or adsorbs on the
surface. This is only important for ®@p = 151 K; the trapping thresholds for ©p =
350 K are approximately Ey,p, = 2 K.

The behavior of trapping thresholds (the maximum beam energy for which
trapping occurs) E'yqp as a function of Op is studied more extensively for the ArfAg
system at 7= 0 K. Fig. 4 displays trapping thresholds as a function of ©p for each
of the models discussed previously. The Einstein and friction models do not accur-
ately describe the trapping threshold. The energy transfer decreases with increasing
Op, thus the trapping threshold must decrease also. Again, as in fig. 3, the influence
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Fig. 3. AE versus Ej for Ne/Ag scattering using an attractive Morse potential: ( ) hBo
results; (— —) Einstein model results; (———) friction model using gf; (------ } friction

model using gp.

of the heatbath is more important at larger @p, i.e., the ratio of E'Q,?S/Eg"‘,mi" in-
creases with 0p.

So far we have dealt with lattices at T = 0 K. Our qualitative conclusions about
the valid energy regimes of the Einstein and friction models hold for finite lattice
temperatures. We illustrate this for Ne/Ag scattering using a repulsive potential, eq.
(3.1) with o, =1.8 A~ and ©p = 151 K. The solid line is the ratio of AEE;jnstein/
AEyLp, versus wple, reproduced from fig. 2. The discrete points are the various Rg
for different incident energies (or collision times) with the solid at T, = 100 K. The
error bars arise because at finite solid temperatures the initial momentum of the
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Fig. 4. Eqrap versus @p for Ar/Ag scattering: (o) hBo results; (4} Einstein model results; (o)
friction model using gf; (o) friction model using gp.
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Fig. 5. RE versus wpz, tor Ne/Ag scattering with a repulsive potential (er=1.8A~1, op =151
K). The results for 75 = 0 and 100 K are shown by a solid line and discrete points, respectively.
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Fig. 6. Sample trajectory of He/Ag scattering at a finite solid temperature, T = 296 K. Energy
is transferred from the gas to the solid: (———) Z/10 (gas); (— —) Pz/10 (gas}; ( )z
(solid); (- =~ -- ) P,{100 (solid); (- - - - - - ) f X 100.

solid and the random force must be Monte Carlo averaged. Typically, around 350
trajectories per Ej per model are required. The qualitative behavior of the curves at
T=0and 100K is similar; the Einstein model is only valid for short collision times.
The magnitudes and direction of the energy transferred between the gas and the
solid reflects the amount of energy in the solid, i.e., T. For the results shown in fig.
5 (for a given E}), AE(T5= 100 K) < AE(Ts = 0 K).

Figs. 6 and 7 show typical trajectories for gas/solid collisions at non-zero solid
temperatures. As can be seen from these figures, the relative motion of the gas and
solid particles is critical in deciding whether the gas loses or gains energy. If the
solid atom is moving into the solid, the tendency will be to accept energy from the
gas (fig. 6). In the opposite extreme where the gas and solid atoms are moving to-
ward each other (fig. 7), it is easier for the gas to gain energy.

4. Summary

The generalized Langevin equations (GLE), which are an exact transformation of
Newton’s equations of motion for a gas particle impinging on an harmonic solid,
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Fig. 7. Same as fig. 6 only energy is transferred to the gas from the solid.

have been recast as coupled first order differential equations soluble by standard
classical trajectory techniques. Three physical models are introduced which greatly
reduce the dimensionality of the trajectory problem. These are the Einstein and
friction models which define effective two-body dynamical problems and the heat-
bath-Brownian oscillator model which yields a three-body effective trajectory pro-
blem. The heatbath-Brownian oscillator model is qualitatively correct for all colli-
sion situations.

The GLE have been solved for rare gas/metal scattering using repulsive and at-
tractive potentials. The energy transfer AE of the gas atom obtained from the heat-
bath-Brownian oscillator model is compared to AE’s obtained from Einstein and
friction models of the solid. Ratios of theses AE’s plotted as functions of the
dimensionless quantity wpt., where f. is the collision time, show the time domains
of validity of the Einstein and friction models. The Einstein model is correct at
short collision times but fails at longer times. Here the length of the collision time is
with respect to the response time of the solid, 7p = 2#/wp. The friction model does
not give the correct behavior at any times.

Trapping thresholds are studied as a function of Debye temperature ©p for Ar/
Ag scattering at T, = 0 K. The trapping threshold decreases with increasing ©p and
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the effect of the heatbath becomes more important. Again, the Einstein and fric-
tion models are incorrect.
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Appendix

Replacing the true damping function ©(f) by a single damped sine function is
equivalent to modeling the heatbath by a single Brownian oscillator. More precisely,
it is equivalent to replacing the exact gas—solid equations of motion by the follow-
ing effective three-body equations (xn(¢) is the Brownian oscillator coordinate)

MR(f)= — VR W(r, R), (A.1a)
mr(£) = —mw [r(t) — xn ()] - V, W, R), (A.1b)
mxy (1) = —mw} Pen(t) — r()] — mewdxn(t) — mByxn(?) + f1(0), (A.lc)

where the Brownian noise fi,(¢) has a white spectrum; i.e.

(fu(®) * f1(0)) = 6mkpTBrd(2), (A.2)

Clearly, eqgs. (A.1) may be easily solved numerically with f,,(f) chosen from a prob-
ability distribution consistent with eq. (A.2). This effective three-particle trajectory
problem is completely equivalent to egs. (2.15) with N=1 and provides an alter-
native way to reduce the Langevin theory to computationally convenient form.

To establish the connection between eqs. (A.1) and (2.15), we solve eq. (A.1c)
for xi,(¢) and insert the result in eq. (A. 1b). This gives an equation of the form of
eq. (2.1) with 8(¢) given by eq. (2.11) with N = 1. This is equivalent to egs. (2.15)

~2 _ ~—1

if we choose y=1/2 f,, & —w%+w§—%ﬁﬁ,c=w w§ in egs. (2.15).
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