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A new class of smooth and structured solid models is developed from the generalized Langevin theory of
gas/solid processes [S. A. Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (1976}, and numerical results
for scattering off the simplest of these model solids are presented. The models, which may be refined to
arbitrary precision, allow one to treat the many-body or lattice effect in gas/solid dynamics in a
qualitatively correct but computationally simple manner. Scattering calculations based on the models may
be carried out using standard classical trajectory methodology; the many-body dynamics modifies the usual
classical equations of motion through noise terms and auxiliary variables. Collisional studies based on the
simplest of the new models reveal the importance of many-body dynamics on energy transfer and trapping
thresholds. The percentage of energy transfer due to many-body effects is found to be a rapidly increasing
function of solid Debye temperature ®p; at @, 225°K the many-body contribution to energy transfer
often exceeds the uncoupled oscillator contribution. The threshold energy for trapping on the simplest
model solid is often more than doubled due to many-body influence. Finally, helium scattering from sﬂver

is simulated and the results are compared with the measurements of Sau and Merrill,

I. INTRODUCTION

Scattering, desorption, reaction, and other gas/solid
processes are subtle and complex.! For the theorist,
the challenge is to unravel microscopic mechanisms by
developing and studying models detailed enough to
mimic the essentials of real systems, Available models
ignore a key feature, the many-body or coupled oscil-
lator nature of the solid. Models which exclude many-
body effects are qualitatively inadequate for desorption,
diffusion, and other processes slow on the time scale
of an atomic vibration, . Residence times for trapped
particles, for example, are roughly a Debye period for
an Einstein (uncoupled oscillator) solid but may be much
longer for real solids due to energy dissipation into the
lattice. For scattering without trapping, a fast pro-
cess, the importance of many-body effects is less ob-
vious. The collision may be completed before the com-
pressional wave created by the incident gas atom has
time to propagate into the lattice, and an uncoupled
oscillator model may suffice. The numerical calcula-~
tions presented below (Sec. VI) show that even for non-
trapping collisions, the many-body influence must be in-
cluded in order to quantitatively describe gas/solid
scattering attributes, The many-body contribution to
energy transfer, for example, increases rapidly with
surface Debye temperature ©, and often exceeds the un-
coupled oscxllator contribution for 8,2 225 °K (see Sec.
VD).

We show here that the computational difficulties as-
sociated with the many-body problem (in classical
mechanics) have now largely been overcome. We show,
in particular, that a new class of computationally tract-
able solid models incorporating the many-body effect
- may be developed from the generalized Langevin theory
of gas/solid processes.?~® The numerical labor in-
volved in solving the simplest of our models is compara-
ble to that involved in a three-particle classical tra-
jectory calculation. Even the simplest model, however,
describes the many-body effect in a qualitatively cor-
rect manner. The new models are suggested by the
‘structure of the generalized Langevin equation (GLE).
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This is*
5t = B x(t) + fu "ot - Ix(r) dr +R() , (1.1a)
or equivalently
) ==Q%x(t) - Io ‘ B{t = 7) £ (1) d7 +R,(t), (1.1b)
where )
‘Qz:ksT/(x2>, . 1r*
80 =[kaTT 8() = [ e(r)ar, (1.2)
t
and
R(t) =R(¢) - B(t) x(0). o (1.3)

The functions ©(f) and B(¢) appearing in Eqs. (1.1) are
response functions for the heat bath, ® x(¢) is the coordi-
nate of the struck solid atom, R(¢) is a Gaussian ran-
dom force or thermal noise source, &, is Boltzmann’s
constant, and T is the solid temperature. The fluctua~
tion-dissipation theorem* links R(t) and 6(¢) by

(RERO)) =kpTO(Y), (1.42)

-or equivalently

REROY) =k 5T A) = (0). (1.4b)

The fluctuation-dissipation theorem expresses the bal-
ance between energy loss and gain processes, which en-
forces the decay of fluctuations from thermal equilibrium,

The average (R({)R(0)) contains all relevant (i.e.,
statistical) information about the random force.? Thus
Egs. (1.1) and (1.4) show that the influence of the heat
bath on the collision enters solely through 6(t}). This
clean separation between lattice and collisional prob~
lems suggests a fruitful viewpoint basic to our models.
Since the heat bath enters the theory only through its

. response characteristics, it may be replaced by an

equivalent dynamical system with identical or nearly
identical response characteristics, How “nearly iden-
tical” the characteristics of the equivalent system must
be of course depends on the problem. For gas/solid
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processes, only the grosser features of the heat bath re-
sponse are important. The response function of the equiv-
alent system must adequately represent ©(¢) for short
times and must decay for longtimes. The essential fea-
tures are displayed by the response characteristics of a
short chain of damped, noisy harmonic oscillators. Our
models thus amount to replacing the heat bath by a
damped harmonic chain (or chains) whose response
characteristics optimally mimic those of the heat bath.
Our simplest model for the heat bath is a single noisy
damped harmonic oscillator. Our models are akin to
an idea familiar in electronics, the method of equivalent
circuits. The electrical analog of our simplest model

" is, in fact, the simplest high frequency LC filter. The
electronics analogy will be made explicit below,

We develop the models as approximants to the exact
response characteristics of the heat bath in Secs, II and
III and Appendices A and B. In Sec, II and Appendix A
we derive useful damped trigonometric expansions for
o(#), Eqs. (2.8) and (2.11). A one term truncation
yields our simplest model and collisional calculations
(Sec. VI) show it to be remarkably satisfactory. Sec-
tion II deals with an analogous representation for R(?),
Eq. (3.17). The key results of Secs, I and III are that
the heat bath can be modeled by a few (~1) damped har-
monic oscillators when computing ©(t) and may be rep-
resented by undamped oscillators when computing R (t).
In Sec. IV we discuss anharmonic effects. We expect
that the most important anharmonicity occurs in the
self-force on the struck atom [the force which in the
harmonic approximation is - «?x(f)] and is thus a one-
body effect. When the self-force term is made anhar-
monic, the computed energy transfer typically de-
creases (Sec. VI). Many-body anharmonic corrections
can also be made. We discuss this qualitatively in Sec.
IV; elsewhere we will give a detailed treatment.®

In Sec. V we propose a class of smooth and structured
dynamical solid models which will prove useful for com-
puter simulations of scattering, desorption, diffusion,
and reaction. Section VI describes our method for
solving the GLE and gives numerical results for scat-
tering of He, Ne, and Ar off the simplest of the model
solids with the solid at both 0 °K and finite temperature.
More extensive numerical work will shortly be pre-
sented elsewhere.®? '

Finally in Appendix C, we develop a least action prin-
ciple for the classical GLE. This Lagrangian formula-
tion provides a natural link between our classical theory
and the Feynman'® path integral form of quantum
mechanics and hence connects our classical and semi-

" classical® Langevin approaches.

Il. COMPACT REPRESENTATION FOR ot}

The kernel ©(t) is developed in a form suitable for use
in numerical solution of the GLE. We begin with the
Laplace domain'! relation betwen x{t), the impulse re-
sponse function of the struck oscillator, and ©(t). It is*

X z) =22 +wi-6(2). @.1)

Equation (2.1) is more usefully expressed in terms of
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the non-negative and even spectral density functions
p(w) and o(w) defined by

x(®) = [ " plw) B g, (2.22)

()= f olw) 222E 44 (2.2b)
o w
For harmonic solids p(w) is the unit normalized mode
density'?; more generally it is a weighted density of
transition frequencies of the solid.® The function o{w)
is the analogous spectral density for the heat bath. [1t
is not unit normalized, however, since 6(0)#1.] Inver-
sion of Eqs. (2.2) yields

p(w) = (= 2w/7) Im¥(iw) , (2. 3a)

o(w) = (- 20/7) Imiw) .

Equations (2. 3) are slightly disguised versions of the
Kramers—~Kronig relations as shown in Appendix B.
From Eq. (2.1) one sees

ImOGw)=Im¥iw)/| Kw)|? . @2.4)
Comparison of Eqs. (2.3) and (2.4) therefore gives
o(w) =p(w)/| Xiw)|® . (2.5)

The relations (2.2a) and (2.5) show that the spectrum of
the heat bath o(w) is easily computed from the more ac-
cessible!® spectrum of the solid p(w).

(2. 3b)

The w dependence of the “screening factor” | x(iw)|?
in Eq. (2.5) is interesting. For w much less than the
Debye or maximum frequency wp, | x(iw)|? is nearly
constant and thus ofw) is proportional to p(w). For
wSwp, | X(iw)!? typically becomes large [e.g., in the
Debye model X(iwp) ==] due to near resonance with
atomic bond frequencies and o(w) decreases. This be-
havior, which is illustrated in Fig. 1 for the Debye
model, is plausible if we recall* that the heat bath is
derived from the solid by clamping the struck oscillator
at its equilibrium position, The local clamping quite
reasonably distorts only the high frequency lattice vi-
brations.

Equations (2.2b) and (2. 5~) give the following useful
representation for ©(¢):

[3) sinwt

“» _p(w)
(- [ e

where w, is the maximum frequency in the distribution
p(w), Converting Eq. (2.6) to an integral on the inter-
val [0, 1] and evaluating by M-point quadrature yields

dw , (2.6)

sinw,t w3 o(w,)

M
3 sinw,t
e(t)zc.,,,z_:lwx o TR .7

where w, and x, = w,/w; are quadrature weights and
points. The expansion (2.7) is inefficient, since it at-
tempts to synthesize an oscillatory decaying function
O(t) by destructive interference. For times longer than

t'27M/wy, Eq. (2.7) breaks down and the approximate
©(t) is undamped.
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FIG. 1. Spectral density of the heat bath [o(w)/w] for the
Debye model, plw) = 13/w}lw?n(wp —w) as computed from Eq.
{2.5). For ws0.3wp the olw)/w is linear; i.e., density is
that of an acoustic continuum. Larger w local damping dis-
torts o(w).

In physical terms, Eq. (2.7) amounts to modeling the
heat bath by an effective linear chain of M undamped
harmonic oscillators,!* A compressional wave set up
in this effective finite chain will be unphysically re-
flected by the chain boundaries rather than lost into the
lattice. The first such reflection or recurrence will
occur at £~¢' and leads to the breakdown of (2.7) for -
t2t'. Equation (2.7) is thus useless for computation of
long duration gas/solid processes, since the spurious
recurrences cause unphysically short residence times
for trapped gas atoms.’® Equation (2.7) is unsatisfac-
tory even for direct scattering, since 6-12 quadrature
points must be used and the computer time per trajec-
tory increases roughly linearly with the number of quad-
rature points [Sec. VIA]. '

Rather than inefficiently modeling the heat bath by a
long chain of undamped oscillators, one can efficiently
model it by a short chain of damped oscillators. Such
a representation eliminates recurrences. One pro-
cedure which works well is simply to expand

.M
e()=Y_ C, sind,t et

A=l

(2.8)

FIG. 2. Contour used in the transformation of Eq. (2.2) into
Eq. (2.9).
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FIG. 3. Memory kernel @ () for the Debye model vs wpt. Ex-
act Debye model results =, One term damped oscillator
approximant, Eq. (2.8), ===, Four term undamped oscil-
lator approximant, Eq. (2.7), ———w—w-=—, The damped

oscillator approximant is adequate in the important short-

time regime and properly decays asymptotically; the four-
term undamped oscillator approximant while excellent for
short-times, is inadequate because of unphysical recurrences
at longer times.

and to fit C,, @,, and v, by least squares to an accurate
©(t) computed from a long expansion of the form 2.7).

An alternative scheme to approximate 6(¢) is based on
the integral representation

o =u} [ | Gl errerent Sinlxept = 0] x’“b(")]dx 2.9)
0

-derived in Appendix A from £q. (2.2b) via the contour

in Fig. 2. In Eq. (2.9) G(», 6(x), and (x) are the
weight, phase, and damping functions defined in Eqs.
(A5), (A6), and (A8). By Eq. (2.6), ©(t=0)=0. Thus

1 .
[ avow “:—5(") dx =0. (2.10)
0
Combining Egs. (2.9) and (2.10) and approximating the
result by M-point quadrature gives

S Gl
e(t) = wab Z w, Pk a2 L e-Y(!;)wa
A=1 A

X {sin[x, wpt ~ 8(x,)] +sind(x,)} . 2.11)
Thus the contour method gives an expansion for 6(t) in
terms of damped oscillators with frequencies w, =x,Wp
and damping constants wpy(x,}. By including the
sind(x,) term in £q. (2.11) we guarantee that the ap-
proximate ©(¢ =0) =0.

In Fig. 3 we compare the exact Debye model O(t) with
a single damped oscillator approximation [Eq. (2.8)]
and a four term undamped oscillator approximation
[£q. (2.7)]. Inclusion of damping is clearly essential
because of the incorrect long-time growth in the un-
damped case, and in fact the one-term damped oscilla-
tor approximant provides a representation of the Debye
solid quite adequate for collisional studies (Sec. VI).
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Thus, at least for the Debye solid, we have an impor-
tant simplification, the systematic part of the influence
of the heat bath on the collision is quahtanvely that of a
single damped harmonic oscillator.

11, SIMULATION OF R(t)

We now turn to an analogous development for R(t),
the unsystematic part of the influence of the heat bath
on the collision. At least for harmonic solids R(¢) is a
Gaussian random process.* Thus the probability
P[R(t)] for a particular R(t) is

P[R(t)] exp[——j j R(T)B(T- T’)R(T’)d'rd-r]

(3. 1)
where B(t) is the inverse of &(t) = R(t)R(0)); i.e.,

] " B —T)8(7 ~1")dr =0 —1") . (3.2)

Equation (3.1) is simply the probability distribution
function for a set of correlated Gaussian random vari-
ables R{t;), R(%,), ..., generalized to the continuous
case.

We wish to sample R(#) by Monte Carlo methods. ¢
While one could select R{t) from a discretized approxi-
mation to Eq. (3.1), this is inconvenient because (a)
such an approximate Gaussian distribution is multi-
dimensional [since R(¢) and R(t'), t##', are correlated],
and because (b) we require R(¢) for continuous time in-
tervals rather than at discrete times. '

We avoid these difficulties by working with the Fourier
domain form of Eq. (3.1),

P[R(t)]~exp[ f dw 'R("’)'z] (3.3)
where the two-sided Fourier transforms are

k= [ RO ar, (3.9)

B(w) = f: B(#)e!“tdt , (3.5)
_ L

$(w) =B (w) = f T et a(t)dt . (3.6)

Note that we have used Eq. (3.2) to obtain the first
equality in Eq. (3.6). Further simplification follows
from the symmetry properties

R(w)=R*(-w)
and
$(w) =3 (- W) =&*(w) ,

which hold because R(¢) is real and &(t) is real and
even. In the phase-amplitude representation,

(3.7

(3.8)

R(w)= Iﬁ(w)le“‘“” ,
Eq. (3.7) becomes

3.9)
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|[R(w)] = |R(=w)], (3.10a)

with
6(w) == 8(-w) ., (3. 10b)

Using Eqs. (3.9) and (3.10), the inverse of Eq. (3.4)
becomes ’

R@)=1 fo *? | B(w)] cos[wt = ()] de . 3.11)
Equation (3. 3) similérly becomes
. z __1_ wp ”‘i(w)'Z
PR®)] exp[ L [ a0 S ] 3.12)

We have cut off the integrals in Egs. (3.11) and (3.12)
at the maximum frequency w,. This is permitted since
(see below)

$(w) =1kyT o(w)/w?, (3.13)
and because o(w), by Eq. (2.5), is cut off at w, by p(w).

We now establish Eq. (3.13).
&(t), one rewrites Eq. (3.6) as

Using the evenness of

#(w) =2Re f " ot 5(t) dt =2 Re B(iw) . (3.14)
0
From Eq. (1.2)
B(2) = (k5 T/2)(B(0) - 6(2)) (3.15)
and thus
$(w) = (— 2k 5T/w) ImOGw) . (3.16)

Equation (2. 3b) with Eq. (3.16) gives Eq. (3.13).

Tractable approximations for R(t) are developed by
converting the integrals in Egs. (3.11) and (3.12) to the
interval [0, 1] and then evaluating by M-point quadrature.
This yields

I’
R@) = .‘;_’Tz ; w, |R(w,)| cosw,t - 6(w,)] (3.17)
and ‘
M
PIR®)] =g P,, (3.18)
where
1w, (@) |R(w)I?
neen[ir 2(8) G- o

In Egs. (3.17)-(3.19), w, and x, =w,/wp, are quadrature
weights and points (e.g., Gauss—Legendre) appropriate
to the interval [0, 1}.

The Fourier domain representation £q. (3.12) is
diagonal and consequently factors into products of uni-
variate Gaussians. This is its advantage over the orig-
inal time-domain representation. Monte Carlo sampling
of R(#) is thus easy. We select |R(w,)| from P,, 8(w,)
is selected from a uniform distribution with 0= 8(w,)

‘=27, and R(t) is constructed from Eq. (3.17).

Our procedure has a simple physical analog. It
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amounts to replacing the heat bath by an M-atom effec-
tive linear harmonic chain with normal modes w,.
These modes are coupled to the struck atom by the
force constants

2=

w? [w, w3 of{w,)]/2 (3.20)

i.e.,

M
RO)=Y

Q2 [.Ex coswyt + &, M] .
pet Wy

(3.21)
In Eq. (3.21) £, and £, are the initial positions and mo-
menta of the normal modes of the effective chain given

by

21 /2 IR (w,)!

b= [;—Bq’%(—%—)] (;:—) S50)) cosblwy),  (3.22)
. 1/2 -

& =':T[U;,’%T] (‘:-’;') |R(“’x) lSina(“’x) . (3.23)

The initial conditions £, and £, are found from the initial
phases 5(w,) and the initial energies

-3[E3vetel)

1 2 .
T e (ay) Rl

oSolo, (3.24)
by the standard Monte Carlo procedure; i.e., the
phases are chosen to be random and the energies are
selected from the Boltzmann distribution

P, ~e /BT (3.25)
This effective chain correspondence is correct, since
Egs. (3.21) and (3.25) with (3.20) and (3. 21)-(3.22) are
identical to Eqs. (3.17)-(3.19).

1V. ANHARMONIC EFFECTS

Our development, so far, has been restricted to har-
monic solids. The linear generalized Langevin struc-
ture is, however, fundamental'” and tied in no way to
the harmonic model. This suggests that the nonlinear
GLE for scattering? may similarly be more general
than its derivation. This is indeed true® if the reaction
of the heat bath to the motion of the struck atom is
treated within the linear response approximation'® and
if other less essential restrictions are satisfied. A -
detailed discussion will be presented elsewhere.® The
key result is that all lattice dynamical information rele-
vant to the scattering can be compressed into a free
lattice response function and anassociated noise source.
Although the methodology for computing anharmonic
responses is undeveloped, the associated correlation
functions can be “measured” in molecular dynamics
simulations.!® Thus large-scale calculations may be
needed to determine the anharmonic responses but once
these are available gas/solid processes can be studied
in small scale Langevin calculations. The contrast
with a conventional trajectory study of scattering off a
set of coupled oscillators is striking.’ There the lattice
dynamics are, in effect, recomputed during each tra-
jectory.

3755

Our program here is much less ambitious than that
outlined above, We only study the effects of anharmonic-
ity in the binding potential of the struck atom. This is
perhaps the dominant anbarmonicity, since the struck
atom is driven far up its potential wall during the col-
lision. Neighboring atoms are disturbed less severely
since the impact energy is distributed among ~4-8
neighbors.

Because the self-force anharmonicity is a one-body
effect, it is trivially incorporated into the Langevin
equation, One merely makes the substitution

Wi x(t) ~ = 28D, ™) [7) — 1] " (4.1)

in the Langevin equation, The Morse parameters £ and
D, are determined from the binding energy of a surface
atom?® and from wi which is the second moment of the
frequency distribution, i.e.,
“p

wi= J; o’ plw) dw. 4.2)
This simple treatment of anharmonicity is clearly exact
if the collision time 7, is so short that many-body ef-

fects play no role; i.e., if the integral in Eq. (1.1) con-
tributes negligibly for t=7,.

V. MODELS FOR GAS/SOLID PROCESSES

Our viewpoint here is that of linear systems theory.?
The heat bath is regarded as a black box characterized
solely by its causal response ©(t). More detailed speci-
fication is irrelevant to the output; e.g., the collision
cross section. Consequently the many-body heat bath
may be modeled by fictitious few-body systems with
similar response characteristics.

This idea has been exploited in other linear systems
problems, A prototype is the modeling of a complex
electrical network by a simple resistance R. Consider
for example, the high frequency LC filter which is a
near perfect analog of our solid. Figure 4 illustrates
the analogy. An infinite harmonic chain coupled to a
terminal cube is shown in Fig. 4(a). This is our ef-
fective chain, (i.e., Eq. (2.7) with M =), which ex-
actly mimics the influence of a spatially isotropic heat
bath (for the anisotropic case the cube must be coupled
to three nonparallel, nonidentical effective chains).

The struck atom is drawn as a cube, since the simplest
solid models ignoxe surface microstructure. The elec-
trical analog of the chain, an LC transmission line, is
shown in Fig. 4(b). Input signals of high frequency
cannot penetrate far into the transmission line, so it
acts as a high frequency filter. The chain displays
analogous behavior in the time domain; compressional
waves cannot penetrate far into the chain in short times.
As shown in Fig. 4(d) the tail of the transmission line
can be replaced by an equivalent impedance Z(w) which
duplicates its frequency response, The heat bath may
similarly be replaced by an equivalent oscillator as in
Fig. 4(c). Finally we may model Z{w) by an effective
resistance R with frequency independent response. This
simplest LC filter is shown in Fig. 4(f). In the analo-
gous solid model [Fig. 4(e)] the equivalent oscillator is
modeled by a Brownian oscillator™ with frequency @,,

J. Chem. Phys., Vol. 65, No. 9, 1 November 1976 .
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FIG. 4. Solid-circuit analogy. (a) The infinite effective har-
monic chain. (b) The electrical analog an LC transmission
line. (c} Rigorous replacement of the heat bath by a single
harmonic oscillator with damping characteristics @1(2) =z’
+w}=&z) [c.f., Eq. (2.1)]. (d) Analogous replacement of
the tail of transnussion line by an AC impedance Z(w)} with
correct analytic structure. {(e) Simplest solid model which
generalizes the soft-cube model to include the many-body ef-
fect; the heat bath is approximated by a Brownian oscillator
with a time-local friction constant ¥, and frequency ;. (f)
Analogous circuit, the simplest LC filter; Z(w) is approxi-
mated by a frequency independent resistance R.

and local damping constant 3. Thisamounts totruncat-
ing the sum in Eq. (2.8) at one term. The solid-circuit

analogy holds for the noise as well as the damping, The.

impedances Z(w) or R put out a random voltage (John-
son noise) whose autocorrelation is related to Z(w) by
a fluctuation-dissipation theorem (Nyquist Theorem),

Our simplest approximation for ©(t), as illustrated
in Fig. 4(e), provides a new model for studying gas/
solid processes, It is a generalization of the soft-cube
model® which includes many-body effects. Trajectory
studies based on this new model are hardly more labo-
rious than those based on an independent oscillator
(Einstein) model. The results, however, are much
more realistic since the many-body effect is accurately
represented {Sec. VI].

The model of Fig. 4(e) may be extended to include
surface microstructure. This is schematized in Fig. 5.
Inclusion of surface structure is necessary in order to
describe rainbow scattering, ® diffraction, #® diffusion
and its competition with desorption, and probably re-
action. We believe that the model of Fig. 5, augmented
to include the anisotropy of lattice vibrations, contains
those features of the solid which play an essential role
in gas/solid dynamics. Because of its simplicity, the
model will permit convenient computer simulation of
many gas/solid processes.

The models just proposed are not the simplest imag-
inable., One may replace the struck oscillator itself
by a Brownian oscillator and obtain a still simpler pic-

ture, a one-oscillator rather than a two-oscillator solid.

S. A. Adelman and B. J. Garrison: Gas/solid processes

Such a model is, however, inadequate, since it implies
that the influence of the heat bath is instantaneously
felt by the struck oscillator. Processes which areunin-
fluenced by the heat bath, i.e., processes which occur
in a time 7« wp , are consequently improperly treated
within this single Brownian oscillator model for the
solid. The simplest models which have all the correct
qualitative features are those in which the heat bath
rather than the full solid is replaced by 2 Brownian os-
cillator. These are, of course, the models proposed
here. .

VI. NUMERICAL METHODS AND RESULTS
A. Methods

Our problem is to numerically solve the GLE for
scattering *

MY () == oWlx, Y)/0Y , (6.1a)

s y 8W(x, ¥)

:z(t)=—w§x(t)+fo Ot -T)x(T)dT+R(t) ~ ——;— ,
(6.1b)

where Y is the coordinate of the gas atom, x is the co~
ordinate of the struck lattice atom, and W(x, y) is the
gas/solid interaction potential.

Our approximations for o(f) involveexpansions intrig-
onometric, Eq. (2.7), or exponentially damped trigo-
nometric, Egs. (2.8) and (2.11), functions. These
particular approximate basis functions allow © () to be
expanded in a series of the form

R
et-1)= Zl 2. h(T) . (6.2)

This sum of products form is important, since it
means that the integral in Eq. (6.1b) need not be re-
computed at each integration step.

Inserting Eq. (6.2) into (6.1b} and defining
H,t)= f th,.('r)x(r) ar , (6.3)
o

we can rewrite Eqgs. (6 1) as the system of first-order
equations

MY (@) =P(@) , (6.4a)

Wo

W,y

FIG. 5. Simple structured solid mod‘al which incorporates
damping and noise fl.e., the many-body effect]. The wavy
surface schematizes a periodic gas/solid potential. The heat
bath is modeled by a single Brownian oscillator with &; and v,
chosen to give a best fit to @(f). By attaching additional (and
in general different) effective chains to the surface, the model
may be augmented to include lattice waves parallel as well as
transverse to the surface plane (i.e., surface phonons.)
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P@)=-8W(x, Y)/8Y , (6.4b)

%(t) =p(t) , (6.4c)
R

p) ==l x(t) + }:1 g (O H (1) ~ i‘;‘;ﬂm(t), (6.4d)

H,(8) =y (@) () . (6.4e)

Equations (6.4) may be solved using integration meth-
ods® standard in classical trajectory work., The only
new feature is that the contribution of the external
force R(t) must be included.

The importance of a compact representation for ©(#)
is now evident. The more terms in Eg. (6. 2) the larger
is the system Eq. (6.4). Fortunately a one-term or
single damped oscillator representation of ©(t) gives an
excellent description of the many-body effect on the
scattering for the cases studied. With this ©{¢) solving
Eq. (6.4) is equivalent in labor to computing scattering
off a two-atom chain. The full many-body effect is,
however, obtained from the Langevin calculation be-
cause of the inclusion of damping in ©(¢). As we have
stressed repeatedly, this damping is essential for pro-
cesses lasting longer than, say, a Debye period. If
damping is ignored, then unphysical reflections of en-
ergy back to the struck oscillator lead to a qualitatively
incorrect description of the process.

One additional technical point must be dealt with, The
noise R(¢) and the initial position of the struck oscil-
lator are not statistically uncorrelated. This is be-
cause the noise involves the initial positions of the heat
bath atoms, which are statistically correlated with x{0).
This correlation makes simultaneous Monte Carlo
sampling of x(0) and R{t) awkward. We avoid the dif-
ficulty by setting x(0)=0. This is always permissible,
since the time at which the collision begins is arbi-
trary.?” In essence, this allows the random force R(t)
to bring the position of the struck atom into a thermal
distribution before the impinging gas atom reaches the
interaction region.

7 B. Results and discussion

We have solved the generalized Langevin equations
(6.4) for scattering of rare gas atoms from metals.
We present representative results here, leaving the
specifics of the calculations and the complete results
to a future report.? In this study, we report results
for Ne and Ar scattering from metals (Ne/metal) and
{Ar/metal) with the solid temperature at 0 °K and He/
Ag scattering at nonzero solid temperatures.

Before solving the generalized Langevin equations an
approximate © (f) must be determined. When the solid
temperature is 0 °K, classically there is no motion of
the solid atoms, allowing only one trajectory as the
solution to Egs. (6.4). The random force [Eq. (3.17)
and (3.16)] and the initial position and momentum of the
struck atom are zero; therefore, no Monte Carlo averag-
ing is needed. Thus the testing for an accurate rep-
resentation for ©(¢) was done at a solid temperature of
0 °K. Approximating ©(¢) by a small number of quadra-
ture points [Eq. (2.7)] was unsatisfactory, as it relied
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TABLE I. Influence of approximate @(¢) functions on Ar/metal
energy transfer at three surface Debye temperatures @p. Po-
tential parameters are those for Ar/Ag scattering; kinetic en~-
ergy of the beam is 2500 °K oriented at 45° from the surface
normal, surface temperature =0°K, Columns 3-5 give re-
sults for 1-3 term damped oscillator approximants to Debye
model ®(). Column 2 gives results when many-body effect
[i.e., @(t}] is set equal to zero.

AE(°K)
&p(°K) e() =0 M=1 M=2 M=3
151 1145 1223 1220 1214
200 812 956 952 943
250 517 710 707 697

on destructive interference of oscillatory functions to
produce decay at long times (Fig, 3). By least squares
fitting © (f) at short times to a damped oscillatory func-
tion (Eq. 2.8) we guarantee long time decay, Table I
displays the effect of varying the number of damped
oscillatory functions in the approximation to ©(¢) on the
energy transfer in Ar/metal scattering, Columns 3-5
give the energy transfer for 1, 2, and 3 functions in the
approximate ©(f) as a function of Debye temperature 6,
One damped sine term is within ~1%-2% of the three
term approximant. This is a negligible difference when
compared to energy transfer without many-body effects,
i.e., ©(t)=0 (column 2). Although the single damped
sine function does not perfectly reproduce the exact ©(¢)
at short times (Fig. 3), the effect of the error on the
energy transfer is small (at least for these short dura-
tion collisions). A critical factor in representing ©{f)
is having ©(f) decay at long times. Thus for our cal-
culations we used one damped sine function to represent
o).

Notice that the many-body contribution to the energy
transfers given in Table I is never larger than ~37%.
This is not typical; rather it is due to the high Ar beam
energy (2500 °K) employed in the calculations in Table L.
Because of this high beam temperature (lower beam
temperatures give trapping in Ar scattering), the col-
lision time is short enough so that the single oscillator
approximation [©(¢) =0] is not grossly inaccurate. For
room temperature beams, many-body influence is much
more important,

This influence is shown in Fig. 6 where we plot, as
an example, energy transfer in Ne/metal scattering as
a function of the surface Debye temperature ©,. The
solid temperature is 0 °K and the gas—metal potential
parameters used were those for the Ne/Ag interaction,
Equations (6.4) were solved using both a harmonic and
an anharmonic (Morse) self-potential [Eq. (4.1)] for the
struck oscillator and with and without many-body effects.
The difference in energy transfer between the many-
body oscillator and the single oscillator increases with
surface Debye temperature. At©,2 225 °K the many-
body effect is larger than the single oscillator energy
transfer. The single oscillator curve has the right
shape, but to get a quantitative result many-body ef-
fects must be included. Using an anharmonic Morse
potential has only a small effect on the energy transfer.
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FIG. 6. Many-body and anharmonic effects on energy transfer

AE in Ne/Ag scattering as a function of surface Debye tem=

perature. The kinetic energy of the Ne is 296 °K oriented at

45° from the surface normal. The surface temperature is
0 °K.

The Morse potential is more repulsive thus the energy
transfer is less than that for the harmonic potential.
Since the anharmeonic effects are small in the struck
atom, it is plausible that no serious mistakes are being
made by assuming the rest of the solid to be harmonic
(see Sec. IV).

For the Ar/metal system we found that the trapping
threshold (maximum beam kinetic energy at which the
Ar trapped on the surface) to be very sensitive to many-
body effects and anharmonicity. (See Table II.) Ata
surface Debye temperature of 151 °K (appropriate to Ag)
the trapping threshold for a harmonic potential inciud-
ing many-body effects is 2200 °K. K an anharmonic po-
tential is used the threshold reduces to 1600 °K, 27%
lower. The threshold is reduced even further if only a
single oscillator approximation is used, 1250 °K for the
harmonic potential and 900 °K for the anharmonic po-
tential, At the higher surface Debye temperature of
250 °K, the energy transfer is much less and the differ-

TABLE II. Trapping thresholds for Ar/
metal scattering with the Ar oriented at
45° from the surface normal, 7=0 °K,
for single oscillator [@(t)=0] and many-
body [(®(f) = 0] models of the solid.

Trapping threshold ( °K)
€p(°K) e(t)=0 |l =0
151 1250 2200

200* 1600*
250 75 250
50* 200

*Anharmonic correction in self-force
of struck atom included as discussed
in Sec. IV and Ref. 9.
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FIG. 7. Angular distributions of He/Ag scattering at solid
temperatures of 296 °K (o), 373 °K (o), and 573 °K (a). The
kinetic energy of the He is 296 °K oriented at 45° from the
surface normal.

ences in trapping thresholds are less drastic, but still
large. Thus for a system like Ar/metal where energy
transfer is large, both the many-body effects and the
anharmonic potential should be included.

In solving the GLE for He/Ag we used nonzero solid
temperatures so to compare with the experimental data
of Sau and Merrill®® and the theoretical calculations of
Lin and Wolken.?® The kinetic energy of the He atoms
was 296 °K. The angle of incidence was 45° from the
surface normal. The solid temperatures were 296,
373, and 573 °K. We arbitrarily chose to use four
terms in Eq. (3.17) for the random force. Further
testing must be done to ascertain that these results are
converged. Angular distributions are shown in Fig. 7.
As was seen in Sau and Merrill’s data, He/Ag scatter-
ing is quasielastic, having the maximum of scattered
intensity at the specular angle. In qualitative agree-
ment with experiment, the intensity of the specular peak
decreases with increasing solid temperature. Since we
have neglected out-of-plane scattering, we cannot make
a quantitative comparison of peak heights and widths.
In a future study we plan to include surface phonons and
thus be able to determine the out-of-plane scattering,
Our results are also in qualitative agreement with the
quantum calculations of Lin and Wolken, 2°

VIi, SUMMARY AND DISCUSSION

" A new class of solid models which properly include
many-body dynamics are developed from the generalized
Langevin equation (GLE). Numerical calculations of
rare gas scattering off the simplest of these models,
which replaces the heat bath by a single damped noisy
harmonic oscillator, are presented. The models de-
rive from the idea that only rather gross features of
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the heat bath’s complex dynamics importantly influence
gas/solid processes, and these gross features are dis-
played by a single (optimally chosen) damped harmonic
oscillator. More precisely, the heat bath response
function ©(f) may be replaced by a much simpler model
response function®, (f). The response function ©,(t)
must resemble ©(t) at short times and decay at long
times,

The great advantage of the models is that they yield a
computationally simple theory which fully incorporates
many-body dynamics. Solving the GLE for our simplest
model is comparable in labor to solving a three-body
classical trajectory problem.

Our numerical results demonstrate that many-body
influence is important quantitatively in rare gas/metal
scattering. Anharmonic effects, while not negligible,
are typically smaller. We find specifically that the
many-body effects contribute importantly to the energy
transfer in Ne/silver scattering, but that the contribu-
tion due to the anharmonicity of the solid is small,
However, for scattering of Ar, a more massive atom,
the anharmonicity of the solid as well as the many-body
effect dramatically influences the maximum energy at
which the Ar is trapped on the solid. Angular distribu-
tions of He/Ag scattering are given for the solid tem-
peratures of 296, 373, and 573 °K. The scattering is
predominantly specular, in qualitative agreement with
the experimental results of Sau and Merrill,
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APPENDIX A

We now derive Eq. (2.9) from Eq. (2.2). We ex-
plicitly consider ©(¢), but our development is equally
valid for x(¢). We first rewrite Eq. (2.2b) as

3 r1 ix7
-9 j e Al
e(t)= 3] ), gl)—— dx, (A1)
where x =w/wp, T=wpt, and g(x) =wj o(w) is a dimen-
sionless mode density. We have used o(w) = 0(— w) and
0{(0) =0 to obtain Eq. (Al). We assume g(z) is analytic

inside the contour in Fig. (2), as discussed below, and
rewrite Eq. (Al) as

(A2)

o) =(-1/2i), +1) ,
where
elrr '
I =Iczg(z) = dz , (a3)

and where I, is the corresponding integral along C,.
One may verify that I;=~1% .
Thus

et)=-ImlI, . (A4)
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Along C,
z=x+itanp[1-x], (A5)
dz=e*®secopdx .

We will also require the phases A(x) and 7(x) and the
amplitudes r(x) and G(x) defined by

z =r(x) e | (A6a)
g(z) =(r(x) cosg/x) G(x) "™ (A8b)
Using Eqs. (A5) and (AG) in Eq. (A3) then gives
L=- J: dx oilx+i tameenr G’Ex) grilesnmesil (A7)

Combining Eqs. (A4) and (A7) finally yields Eq. (2.9)
with
o(x) =¢ +n(x) + Bx), ¥(x)=tanp(l-x) .
For the Debye model ©(t), n(x) =-28(x) and 6(x)
=¢ - Blx).

The angle ¢ is chosen to optimize the accuracy of the
quadrature approximant, Eq. (2.11). We have found
35° S ¢ $45° to be best. "

(AB)

We now return to the analyticity assumption. For the
Debye model ©(f), it is valid for 1z|<1; i.e., for ¢
<45°, For real solids it is not strictly valid because
of van Hove singularities in the mode density, The
problem disappears if we work with approximate analyt-
ic densities, for example densities found by Montroll’s
method.!* Some error is incurred with approximate
densities, since the singularities dominate the long-
time behavior of the response functions.'? For our
purposes, the error is unimportant, since ©{t)—=0 at
t -« and therefore the long-time part of 6(t) contributes
negligibly to the integral in Eq. (6. 1Db).

APPENDIX B

We show here that Eqs. (2.2) and (2. 3) are equivalent
to the Kramers-Kronig relations, e.g.,

v f Lo @

linking the real and imaginary parts of the complex
susceptibility

@) = 7' (@) +1 §(w) = f0 " ettt dt . (B2)

Our plan is to derive (Bl) from Eqgs. (2.2) and (2. 3).
We begin with

x"(w) = j; ) sinwt x(¢) dt

=—Im f " x#) et dt = — Im§Giw) | (B3)
(1]

which follows from Eq. (B2). Comparing Eqs. (2.3)
and (B3) gives

%* (@) = (1/20) p(w).  (BY)
The dissipative part of the susceptibility X”(w) is odd
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by Eq. (B3) so p(w) is even as asserted earlier.

Combining Egs. (2.2), (B2), and (B4) gives

x(w) = %f )'('(w')dw'f ¢! sinw’t dt . (B5)
0 0
"Carrying out the inner integral in Eq. (B5) and using
X" (- w)==X"(v) gives

X(w)__f dwl X"(w') . -

o (B6)

Finally taking w-w +i€, w real, and €~0, and using
the standard identity

1 1 . r
7 —o—ic _P[w'—w] + i1 8w’ = w)
gives Eq. (B1).

A parallel demonstration holds for o(t), since the
Kramers-~Kronig result is true for any causal response
function, '

APPENDIX C

We here develop a least action formulation of the gen-'

eralized Langevin equation. This is important for the
transition from classical to quantum mechanics.® Our
result is that the scattering GLE equation (6.1) can be
derived from the two-particle effective action functional

s[x(), Y(®)]= fo Tdt{%M P2(8) + 2 27(0) - 3 R x2(0)

=Wk, Y0 + fo " ds x(0) i”-ee((—g)‘—s’ x(s) +x(t)R(t)} ,
(c1)
via a least action principle

6s[x(), Y()] =0, (c2)

where 5 denotes variation of the trajectories x(t) and
Y(f). Notice that Eqs. (C1) and (C2) differ from the
conventional Lagrangian formulation of (nondissipative)
classical mechanics® because of the many-body terms
involving R(t) and ©(¢) in §.

We begin with the full gas/solid action S[x(t), Y(t),
xo(t)], where Xg(#) denotes the trajectories of the heat
bath atoms. ! We split it into a two-body and a many-
body part; i.e., we write

S[x(t), Y(), xq(t)]

=S,[x(t), Y(1)]+S,[x(t), xo®], (C3)
where the two-body contribution
s\lx®), Y(0)]= fo T {AMT) +3520)
-1 x2(t)- Wx), YOI}, (c4)

and where

T .
S, [x(t), xo(t)]= fo {3350 %40
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~ix3() whoxo(t) - x () Whp x(t)}dt - (C5)

is the action for the heat bath if driven by a force
- e x(t).

The trajectories Y(¢), x(f), xo(f) are arbitrary. It
is the additional assumption of least action which leads
to the classical trajectories. We now assume classical
trajectories for the heat bath atoms; i.e., we assume’

xg(t) = QQ xc(t) (CG)

where x(t) is arbitrary. Integrating the first term in
Eq. (C5) by parts and using Eq. (C6) yields

S, [x(t), xo@W]=3x3O%,®) |7

px(t) ,

_-;- J;T dtx} () whpx(t), (7

where now x(t) is that classical trajectory of the heat
bath which satisfies the double ended boundary condi-
tions x4(0) =x4 and xo(T) =xX,.

_ Equation (C6) can be solved to give Xo(t) as a func-

tional of x{f). Substitution of the result in Eq. (C7)
gives after much rearrangement
Sl %), xo(]=H[x}, xo; T)+S[x®)], (C8)
where
H[x}, xo; T)=3x¢ 6(T) G(T)xa
+ix} 0T (T xo-xY 64 (T)xy, (C9)

with 6(¢) as defined elsewhere, ! and where

S[x@))= j: dt{f ds x(t) ST - s) x(s) +x(t)R(t)} .

o(T)
(C10)
The random force*
R() =wiy [ 6(t) xo(0) + 6(t) % 4(0)] (c11)
is expressed in terms of X4 and X as ‘
RE) =wiq{9"(T)[0(T —0)xg+6(t) 5]
T

+ [ etemer - 51t x(s)ds} . (c12)

H(x}, xg; T) is independent of x(¢) and hence can be
ignored when formulating a least action principle for
%(¢) and Y(t). Thus Eq. {(C1) is derived by adding Eqs.
(C4) and (C10). The scattering GLE is derived from
Eq. (C1) by varying x(f) and Y(¢) with xo, Xg, and T
fixed using Eq. (C12).

*Alfred P. Sloan Foundation Fellow.
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