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A quantum mechanical scattering study is carried out to test a collisional pumping model for cooling the 6
and 2 cm doublets of interstellar formaldehyde. The Arthurs and Dalgarno formalism is extended to the
collision of an s-state atom with a rigid asymmetric top molecule and applied to rotational excitation of
ortho formaldehyde by helium impact. Using a previously determined configuration interaction potential
energy surface, the coupled-channel (CC) equations are integrated at 12 scattering energies between 20 and
95°K. Up to 16 ortho formaldehyde states, yielding a maximum of 62 CC equations, are retained to test
convergence of computed cross sections. Resonance structure is obtained at ~20.2, 32.7, and 47.7K. The
computed inelastic cross sections are averaged over a Maxwell-Boltzmann distribution and the, resuitant

rates used to solve the equations of statistical equilibrium for the relative populations. The 6 and 2 cm .
doublets are found to be cooled only upon inclusion of the j =3 doublet. :

i. INTRODUCTION

During the past few years, considerable interest has
developed around observations of anomalous absorption
in interstellar formaldehyde. This absorption is “anom-
alous” because it is seen toward dark clouds, implying
an excitation temperature for two rotational states low-
er than either the background radiation temperature
(~2.7°K) or the expected kinetic temperature (10~
20 °K). These observations are quite common in the in-
terstellar medium and are seen in (1) the 1,5~ 1,, (6 cm)
transition of H,CO, '~* (2) the 2,,~2,, (2 ¢cm) transition
of H,CO, *~* and (3) the 1,5~ 1,, transition of the isotope
H,®co. ¢ :

To obtain such low excitation temperatures requires
a nonthermal cooling mechanism. A number of pump-
ing models have been proposed that involve transitions
to higher rotational states of H,CO followed by radiative
decay. The pump or force causing the excitations has
been variously suggested as being due to collisions” or
to radiation at millimeter,*® infrared, '° and ultra-
violet' wavelengths. Evans ef al.® have recently given
a convincing discussion which indicates that the colli-
sional pump is the only model that accounts for all the
observations and satisfies necessary criteria.

Since the collisional pump appears to be the key to un-
derstanding interstellar cooling of H,CO, several work-
ers have attempted to verify this model theoretically by
determining the appropriate rotational cross sections.
The validity of these studies is limited however, due to
the use of approximate interaction potentials (hard” or
soft sphere), %13 approximate dynamics (classical’ or
semiclassical'? theory), and inappropriate approxima-
tions (Born® or sudden®).
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In the present study the collisional pumping mecha-
nism is investigated employing rigorous quantum me-
chanical calculations. The Arthurs and Dalgarno®®
coupled-channel (CC) formalism is extended to treat
scattering of an asymmetric top by a structureless
atom. Using a previously reported ab initio intermo-
lecular potential'® " between H,CO and He, the CC
equations are integrated to yield rotational cross sec-
tions. Collisional rates are then determined from
these cross sections and used to solve the equations of
statistical equilibrium whose solutions permit one to
ascertain the validity of the collisional pump as a mech-
anism for the cooling of interstellar H,CO.!® For these
calculations, the most probable scatterer H, is re-
placed by He to reduce the scope of the computations.

It is anticipated that the main conclusions of this study
will not be seriously altered by this choice of scatter-
ing particle.

It should be noted that beam maser measurements!®
of rotational relaxation of H,CO by collision with He and
other gases and also microwave pressure broadening
experiments® on the H,CO-He system have been car-
ried out at room temperature. Owing to the large dis-
parity in collision energies between the present theo-
retical results and these two sets of measurements, a
critical theory—experiment comparison is not obtain-
able.

The remainder of the paper is organized as follows.
Section II discusses the properties of asymmetric top
wavefunctions required for development of the CC scat-
tering equations presented in Sec. IlI. Sec. IV de-
scribes the interaction potential and Sec. V outlines the
scope of the scattering calculations and presents the
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cross section results. The use of these cross sections
to test the collisional pumping mechanism is described
in Sec. VI followed by a summary of the study in

Sec. VII.

H. ASYMMETRIC TOP

Before treating the scattering of an asymmetric top
by an atom, it is useful to summarize the properties of
the asymmetric top wavefunctions. An excellent de-
tailed discussion is given by Davydov. 2

It is convenient to define two coordinate systems: (1)
a space fixed (SF) frame denoted by primes and (2) a
body fixed (BF) frame (unprimed) attached to the center
of mass of the top. The BF axes are taken to be coin-
cident with the principal axes of the top. The orienta-
tion of the BF axes with respect to the SF axes is given
by the three Euler angles {(agy). 2

The rotational Hamiltonian of the top is

1 Jz JZ JZ

=] X —y —£
H 2(1,+I,+1,) @
=AJ%+ (B-AW 2+ (C-AV2, @)

Here JZ is the square of the angular momentum opera-
tor J, J; (i=x,y, z) are the components of J along the
BF axes, I; are the principal moments of inertia, and
A=1/2],, B=1/2[, and C=1/2I are the rotational con-

" stants. Tosolvethe Schrddinger equation for the Hamil-

tonian of Eq, (2), itis convenient to expand the asymmetric

top wavefunction in a basis set of symmetric top (where
I,=Iy) wavefunctions, zp,,,‘!,,. The asymmetric top wave-
function is therefore expanded as

i
ii(apy)= 2 alitmp(aBy), (3)
k=g
where
dimptas)= (L Dt (apy) @

Here Dj,;(aBy) is an element of the rotation matrix®;
the al, are expansion coefficients (to be determined);
3G+ 1%, m (Im,] =5), and kk (k] <j) are the eigen-
values of J2, J,. (SF projection), and J, (BF projection)
respectively; and 7 labels the asymmetric top eigen-
functions (see below). Note thatJ?and J,. are con-
served for both the symmetric and asymmetric top,
while J, is conserved only for the symmetric top. The
fact that J, is not conserved results in mixing of the

(2j + 1) different values of k& corresponding to a given
(j, m;) to form (2j +1) states of the asymmetric top.
These asymmetric top states are labeled by an index

7 as indicated above, '

Substitution of Eq. (3) into Eq. (2) leads to

;ai:r{@m,k'lﬂl ’l’]m,») - €]'rbk’k}= 0 (5) .

for (2j+1) values of 7. The matrix elements of H over
the symmetric top wavefunctions can be found in Davy-
dov, 2

The (2 + 1) equations given by Eq. (5) can be simpli-
fied by employing the symmetry properties of the Ham-

" iltonian. The Hamiltonian is invariant under the coor-

dinate transformations: (1) identity transformation, (2)
x=~~x, (3) y~—1y, and (4) z~ - 2. These transformations
form a representation of the Klein Four Group, which has
four one-dimensional irreducible representations. By
transforming the basis of symmetric top wavefunctionstoa
set of symmetry adapted functions, which transform ac-
cording to the irreducible representations of the four
group, the Hamiltonian matrix of Eq. (5) becomes block
diagonal, thus decoupling the system of Egs. (5) into
four smaller systems. The four classes of symmetry

.adapted functions y, are

‘ngd= 7—17 [;o,mj“ (—)’zp,,,,j_,,], kodd, s=0or1, (6a)

oven 1
X = Z(\/-—l_—_'+—6°,)[lp""1"+ (=Y¥sm;-4), % even, s=0or 1. |
(6b

Note that there are four types of functions (% is odd or
even and s=0 or 1), each of which transforms accord-
ing to a different irreducible representation. Equation
(3) can now be restricted to sums over a single class of
symmetry adapted functions,

even (odd)
= Z bz-ers
k=0 (1)
where the state index T now also implies odd o7 even
values of & and a specific value of s (0 or 1). Equa-
tions (5) therefore reduce to four smaller systems of
equations of the form

sven (odd)

Z bi‘r{(XR ‘s l HI Xas? = €4:84 wr=0. )
£=0 (1)
These sets of equations can be solved by standard tech-
niques in linear algebra to yield the eigenvalues ¢,
and expansion coefficients b}, of the asymmetric top.

The four coordinate transformations described above
do not represent all of the symmetry properties of the
asymmetric top Hamiltonian. The Hamiltonian also
possesses inversion symmetry (simultaneous inversion
of the x, y, and z coordinates), thus the full group of
the top is D,,=D,®{. (Here D, is a realization for the
four group and i represents the inversion group.) In
Sec. III this additional symmetry is used to simplify the
CC scattering equations. Note further that

F¢£MJ= (_)I‘*08¢£m1 s (8)

where F is the inversion operator, Hence the symme-
try adapted functions of Eq. (6) are necessarily symme-
try adapted functions of the larger group D;,.

For H,CO there is a further symmetry owing to the
interchange of the identical H nuclei that results in
ortho (symmetric) and para (antisymmetric) couplings
of nuclear spins. Since there is no interaction that
couples nuclear spin states of different symmetry dur-
ing collisions with He, ortho and para H,CO can be
treated separately. The astrophysical observations of
interest in this study are of ortho H,CO; therefore only
ortho states need be included in the scattering calcula-
tions. Since the H nuclei are Fermions, the total wave-
function must be antisymmetric under their interchange.
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Ortho H,CO
Energy Levels and Transitions

— 6 (33.4544°K)

32 3

313 5 (32.0631°K)
FIG. 1. Energy level dia-
gram for ortho H,CO with
the dipole allowed transi-
tions indicated.

2, 4 (226219

2,7 % 3 (21.9262°K)

ho_ ] ¥ __ 2 (15.3987°K)

1, 1 (15.1668°K)

The nuclear wavefunction is symmetric; therefore the
rotational wavefunctions must be antisymmetric. Let-
ting P be the operator that interchanges H nuclei then

Pomi=(=Form ©)

where again 7 implies odd o» even values of k. Since
¢i™ must be antisymmetric for ortho H,CO, Eq. (9)
implies that only states with & odd [i.e., functions given
by Eq. (62)] are required in this study.

Using the rotational constants of Oka® (A4 = 38 835
MHz, B=34003 MHz, and C=282029 MHz) to evaluate
Hamiltonian matrix elements, the energy levels of
ortho H,CO were obtained from the solution of Eq. (7).
These energy levels accompanied by two labeling
schemes are given in Fig., 1. For the lower (upper)
state of each doublet, s=1(0).

HIl. THEORY OF ATOM-MOLECULE SCATTERING

In this section the Arthurs and Dalgarno'® (AD) cou-
pled-channel (CC) formulation is extended to the scat-
tering of an asymmetric top by an atom. For simplicity
the atom is assumed spherical (IS state) and the top is
also taken to be in a singlet state so that details associ-
ated with the coupling of spin angular momentum are
avoided. Collision energies are assumed to be suffi-
ciently low that vibrational and electronic excitation is
not possible.

The Hamiltonian of the total system (top plus atom)
in center of mass coordinates is

H=(-1*/2u)vi+H  (R)+V(r, R), (10)

where the terms from left to right are the kinetic ener-
gy operator for relative motion, the rotational Hamil-
tonian [Eq. (2)] of the top, and the intermolecular po-
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tential. - Here p is the reduced mass of the total sys-
tem, r=(r,8,4’) is the position of the atom in a space
fixed (SF) frame and R’ =(aBy) is the orientation of the
top in the SF frame.

An expansion method is used to solve the Schrédinger
equation

(H-E,,,)¥=0. (11)

The total angular momentum J and its SF 2’ projection
J,»=M are conserved in this system. AD found it con-
venient to couple the rotational angular momentum § of
the top and the relative orbital angular momentum 1 to
form eigenfunctions of J(=j+1) and J,.. Following AD,
the angular dependences are basis-set expanded, i.e.,
the wavefunction is written

5 1 .
i, R)- ,; Suee @ YRLGL R, (12)
’ 'T,
where
4 1
YiaG', R = Z Z c(jLg; mym, M)
ﬂ,"’ ﬂl,"l )
X ¥im, ()05 () . (13)

Here C(jlJ; mym,;M) is a Clebsch-Gordan coefficient, 22
Y,,,(#') is a spherical harmonic describing the relative
angular momentum of the colliding system and ¢™i(R’)
is the asymmetric top function of Eq. (3). Substituting
Egs. (10), (12), and (13) into Eq. (11), multiplying on
the left by Y;¥¥..,.., integrating over #' and R’, and mak-
ing use of orthonormality relations, # yields the CC
equations for the radial functions

2 rf{y?
[%,2 - 'l_(l_,r!tl_) +k§..,.o]uf:,',._“,(r)

= fi# E E 2 (j'l'T’;JI V,j"l"T"; J) u:u,ufn.,j"-(r) ’
o

PR I

(14)
where
Blep o= 2u(Eyoy = €5000) /12 (15)
The coupling matrix elements are defined by
(jllITI;J' V]j"l"'r"; J)= ffdﬁ'd?"yf#’f,'(;', BN
xV(r, R %,.....6",R"), (16)

and are independent of M.

The interaction potential between an asymmetric top
and an atom may be written

® A
Vir, R')= Z; Z‘(41r/2>\ +1)V2,,()7,,00, ¢)
A0 y=-

where 6 and ¢ are the angles that prescribe the orien-
tation of the atom relative to the top. Since (9, ¢) are
not the angles used previously and integration over an-
gles is required by Eq. (16), the group representation
property® is used to write Y,,(6, ¢) as a function of '
and R’. Hence the potential may be written

(17

vie,R")= :2 (@n/2x + 1)V3, ()Y,,.(RND}., (") . (18)
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Substituting Egs. (3), (13), and (18) into Eq. (16) yields the following expression for the coupling matrix elements

(j’l"r';JlVlj"l""r";J)=(-)"""'"t t T/ A SON 8 ¢ v,“,,l.,.,.(r)[(Zj'+1)(2j"+1)(21'+1)(Zl"+1)]‘/2

LY MET A

) l’ l" N . N 14 ’ . . :
x( ()(’ 7o ){7 ! J} . (19)
0 o kl —k" k"—k’ l" j" A
The (::!) are 3-j symbols and {:::} is a 6-j symbol. %

Symmetry considerations simplify evaluation of the coupling matrix elements. Conservation of parity requires
the coupling matrix elements Eq. (19), to vanish unless
(—y I‘*I.”l,’,l= (_)jll.kl',stl‘lll

) (20) TABLE I. Parameters for the HF interaction, %

(Recall from Sec. II that T implies odd or even values

o A v A B c : D
of k and s to be 0 o7 1.) Hermiticity of the potential
results in 0 0 3.034(7) 1.845 —4.793 (6) 5.635 (7)
1 0 | —-2.483(7) 1.751 1,226 (7) —-1.186 (8)
G| VU =G | V)T ) L (1) 2 0 5.449(7) 1.890 —6,558 (6) 7.320 (7)
2 2 8.094 (6) 1.735 ~3.628 (6) 3.789 (7)
The boundary condition on the radial function 3 . 0 —~1.056 (8) 2.586 —7.069 (5) 1.354 (6)
R N Do jmoime wme oemo
k 1/2 4 2 1.853 (7) 1,759 —6,595 (6) 6.644 ()
_(—l’—) 87 eeeegie €xplillyr—1n/2)} (22) 4 4 1.801 (6) 1.774 —7.542 (5) 8. 072 (6)
Fjors N 5 0 9.850 (6) 1.748 —3.935 (8) 3.771 (7)
defines the scattering matrix S”. - For the j'7'~jrtran- - 5 2 —-1.483 (7} 1.810 3.471 (6) —3.309 (7)
sition the integral cross section is given by 5 4 —-3.876 (6) 1.773 2.176 (6) -2,133 (7)
- 6 0 —6.766 (6) 1.773  2.240 (6) -2.139 (7
_ m 6 2 9.097 (6) 1.867 —6.458 (5) 6.286 (6)
Iirme-= G DL, Z.; (27+1) 6 4 5.635 (6) 1.849 —1.443 (6) 1.405 (71
Sop o bwmm e cime  peso
X MZ;“ N;m [T eregiel® @) 7 2 _1527@ 1.765 6.644()  —6.362 )
7 4 ~7.489 (6) 1.970 4,087 (5) —4.048 (6)
where 7 6 —1.423 (6) 1.999 2.603 (5) —2.759 (6)
8 0 6.528 (6) 2.340 -1.211 (5 8.455 (6
Tytyoeregpn=855e80y Bers = St poneeyyr - (24) 8 2 -2.540 :s; 2,123 —6.083 :3; 2.;94 :5;
The cross section in Eq. (23) has been obtained by aver- 8 4 2.241 € 2.032 -1.058 (5) 1.096 (6)
aging over initial projections m, and summing over final g g 2' 423 :g; ggzg ' —;ggg g;; _;'ggz :g;
projections m;. Since the S matrix is unitary, the P ~1.018 (6) 1.827 1.612 (5) —1.453 (6)
cross section for the reverse transition of a known one 9 2 1.458 (6) 1.900 —5.968 (5) 5.435 (5)
can be obtained from the reciprocity relation 9 4 ~3,530 (6) 2,011 .9.729 (4) -9,621 (5)
oy A /G Doy @ 5 5 Iign e som( v
10 0 5.618 (5) 1.909 -2.721 (4) 1.752 (5)
V. POTENTIAL ENERGY SURFACE 10 2 -5.311 (5 1.916 1.599 @) —~1.309 (5)
. L . . 10 4 1.374 (6) 2.003 -4,401 (4) 4,150 (5)
A previously computed ab initio interaction potential 10 6 3.146 (6) 2.191 —2.969 (4) 4.099 (5)
is used in the present study. The potential was con- 10 8 2.936 (5) 1.818 —8.167 (4) 8.218 (5) :
structed using a series of Hartree-Fock (HF) calcula- 10 10 1.088 (6) 2.730 9.658 (3) —8.540 (4)
tions'® as a starting point which were subsequently im- 11 0 1.532 (5) 1.681 9,677 (4) 1.023 (6)
proved upon by including effects of electron correlation 1m 2 -2.037() 1.763 7.733 4 ' -7.618 (5
via large scale (up to 38000 configurations) configura- E : ‘g'gg; :2; ; :gg i'gzg ::; ';ﬁf g;
tion interaction (CI). ' 11 8  -4.106(5) 1.881  7.275 (4)  -7.134 (5)
To facilitate its use in the CC formulation of Sec. I, 1 10 —1.562 4) 1.691 1.133 () ~1.127 (5)
the potential is expanded in spherical harmonics with 120  -3.089(5) 1,730  1.869 (5) —1.840 (6)
coefficients that are a function of 7 only [see Eq. (17)]. i: : ;'::Z g; :‘gg ‘:' 222 g; g':f,g 8
These coefficients are tabulated in Appendix B of Ref. 12§ :1 825 @) 2.232  7.1%0 (2) —5: 528 (4)
16 and fit to the form , 12 8 4.479 5) 1.913 -5.518 (4) 5.421 (5)
z < 12 10 2,446 (4) 1.734 ~8.733 (3) 9.300 (4)
B T r=10.5a.u. @) 12 12 -2.358() 12713  3.639 Q) -4.978 ()
) o , r>10.5a.u
*Distance units are a.u. and energy units are °K. Values in
The constants A, B, C, and D are listed in Table I for parenthesis are powers of 10,

each {\, v) pair. . PSee Eq. (26).
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TABLE II. Parameters for the correlation interaction. b

0 A B c
0° —-1,30529 (4) 0, 80863 8,19754 (5)
. 90° -5,58237 (4) 1.11606 2, 08846 (5)
180° —8.00165 (4) 1.01991 3.46152 (6)

*Distance units are a.u. and energy units are °K. Values in
parenthesis are powers of 10,
- bsee Eq. 27).

In Egs. (2)-(4) of Ref. (17), the correlation contribu-
tions v () (A =0, 1,2 and v=0) are given in terms of
V(r,8) for 6=0°, 90°, and 180°. These radial functions
have been fit to the form

Vir)=Ae® - Cr8.

Values of A, B, and C for §=0°, 90°, and 180° are
listed in Table II.

-

27)

The coefficients v, and +$3™ are then combined to

yield the v,,(v) of Eq. (17) which fully defines the inter-

action potential.

V. SCATTERING CALCULATIONS
A. Description

Cross sections for rotational excitation of ortho H,CO
by collision with He were determined by integrating Eq.
(14). In order to carry out the integration, it is neces-
sary to specify the total energy of the system E,,, [see
Eq. (11)], the number of internal H,CO states, and the
integration procedure. For the astrophysical applica-
tion, Boltzmann averaged rate constants are required
(see Sec. VI), and accordingly 12 values of E,,, in the
range 20° < E,,, =95 °K were chosen. (See either Table
HI or Table IV for a listing.) Since the sums on the
right hand side of the CC equations (14) extend, in prin-
ciple, over an infinite number of (j, 7, I) combinations,
they must be truncated to obtain a computationally tract-
able problem. This is achieved by first choosing a ba-
sis of internal ortho H,CO states (j, v) and then selecting
all values of orbital angular momentum I compatible
with the triangle inequalities of angular momentum cou-
pling for a given value of the total angular momentum J.
For the present calculations, a basis set of 16 ortho
H,CO states with 1 <j <5 were chosen which results in

2197

W 2,3 |

i 1

| 1
5 20 25 30 3% 40 45 50
o)

Elastic cross sections.
tions were computed are listed in Table IIL

1 L

O

FIG. 2. Energies at which cross sec-

binations. For E,,, <50 °K, there are 4-8 H,CO states
energetically accessible in the asymptotic region. The
CC equations were integrated using Gordon’s method. 2

B. Results

Elastic cross sections for the eight lowest (j <4)
ortho H,CO states are listed in Table III and displayed
versus E,, in Fig. 2. Cross sections for all excitation
transitions among these states are given in Table IV.

. Selected inelastic cross sections are plotted in Fig. 3.

De-excitation cross sections were obtained using the
reciprocity relation in Eq. (25).

Resonances occur at approximately 20.2, 32.7, and
47.7°K in many of the integral cross section versus
E,, curves. These energies are approximately equal
to the internal energies of the =2, 3, and 4 doublets,
respectively. A systematic study of this resonance

‘structure was beyond the scope of the study.

VI. COOLING OF INTERSTELLAR H,CO

In order to test the collisional pump as a mechanism
for cooling of interstellar H,CO, the rotational cross
sections given in Sec. V are used to determine excita-
tion temperatures, For simplicity we assume that the
only processes of importance are dipole radiation and

a maximum of 62 coupled channels, t.e., (j,7,I) com- collisions. Higher moment transition probabilities are
TABLE III. Coupled channel elastic cross sections.®
Etot(ox)
State 20.1668 25.1668 27.6668 30.1668 32,6668 35.1668 37.6668 40,1668 42,6668 47.6668 70.1668 95,1668
1y 331 235 229 213 345 189 179 170 163 152 115 93
14 331 257 241 231 418 194 182 174 167 154 115 93
24y ces 267 282 249 430 217 205 197 186 178 122 96
2y ver 308 306 263 414 228 211 204 195 187 124 97
343 s see see v 1620 289 277 255 244 259 135 103
3y, eee e v ves 253 288 293 281 353 T 142 106
444 e cee oo vee “os see ves vee ves 950 162 112
4, see ere see ose cer see ves vor e e 178 116
Units are A%
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TABLE IV. Coupled channel inelastic cross sections. ®

. E\u’K)
Transition 20.1668  25.1668 27,6668 30.1668 32.6668 35.1668 37.6668 40.1668 42,6668 47.6668 70.1668 95.1668
1 =1y, 66.0 25.6 17.8 15.1 45.5 12.3 11.5 11.1 10.1 9.5 7.6 6.6
1 =2y, 22.7 23.3 23.3 37.6 20.2 18.1 17.1 16.7 16.1 10.5 8.5
1y —24 12.2 11.8 13.9 17.1 11.2 9.5 8.9 8.0 7.7 5.7 5.2
1, =3y, 4.8 4.1 5.4 6.3 6.4 8.0 5.4 4.6
1, —~3y ese 0.3 0.6 0.8 1.2 1.6 0.9 1.3
1~ 4y oo ese e . . cen cee “ee aes 3.0 3.5 3.8
14 —~4y, cee ese e e csa oo oo e “ee 0.9 1.2
102, 13.4 13.8 15.4 33.1 11,5 9.9 9.7 9.2 8.5 6.3 5.4
1,2, 14.2 13.3 16.0 34.9 14.3 12.4 11.6 10.3 8.9 8.4 7.8
1,3y ... 2.5 7.6 8.6 7.6 7.2 7.0 4.7 3.4
1,—3;, 1.6 2.4 2.6 3.7 ,. 4% 4.5 4.3
1y9—~4y, . .. e eve o cen 3.0 2,5 2.2
lto_'4l3 cee ese e Cen ves ces o .. ven e 0.6 0.7
25, —2y 24.8 19.4 19,9 92.4 13.1 10.4 8.4 7.1 5.5 3.5 2.8
2y~ 345 10.8 11.9 13.3 13,3 12.9 20.0 11.6 11.1
2, =3, 2.1 3.3 3.7 3.7 9.5 3.4 3.1
212...4“' cee .en e aee .ee e .. ‘e 4.2 3.0 3.3
212—.413 sen e “ae “us ves nes . ces cos cee 1‘1 1_3
2~ 3y, 7.6 7.1 7.9 6.8 7.3 12.3 3.7 2.8
2 =3, B.2 11.5 12,1 10.4 20.2 9.5 8.2
24 —4y, .e cee con e “ee vee e e 4.2 3.9 3.4
24~ 4y, e e - e ces e .o oo e “ee 3.3 3.6
33 —3, 9.8 10.2 8.8 9.2 25.0 2.8 2.1
343 —4y, ves res e e e “es e v e 14.1 11,9 10.7
3y3 445 e s s e .en cee e eee e e 2.4 2.4
3,4, “es .ar v e . vs e e e 12.7 2.6 1.9
3,4y .o .o es ‘en oo v s von “es ves 10.0 9.6
4~ 4y s are e eee “re “ee e 2.7 1.8
®Units are AZ,
' " " several orders of magnitude smaller than dipolar ones
60 INITIAL STATE =19 (2} and hence assumed negligible here. 2" 1t is also as-

s0f i . sumed that the interstellar medium is rare enough to
L i neglect radiative trapping.

Astrophysical observations indicate that the 6 cm (5
=1) and 2 cm (j=2) doublets of ortho H,CO are cooled,
i.e., the excitation temperatures T,,, between states 1
and 2 (see Fig. 1) and between states 3 and 4 are less
than either the isotropic background temperature (Tm
~2.7°K) or the kinetic temperature (10= T, =< 20 °K).
The excitation temperature is defined by assuming a
Boltzmann distribution for the populations of two inter-
nal states, viz.,

O e (AZ)

n;/n;=(g,/g;) expl- (E; - E;)/ kg Tyre] - (28)

where #,; is the population of the ith internal state, g

is the degeneracy of the ith internal state, E, is the en-
ergy of the ith internal state, and kp is the Boltzmann’s
constant. Thus if the populations of two states are
known, then the excitation temperature characterizing
them can be determined.

The populations are determined by solving the equa-
tions of statistical equilibrium, 28

d’z E
_d_ti. = ;L;{AH +B,p(vy,) +[Helky, 1,

E fot (K
FIG. 3. Inelastic cross sections for initial states 1;y and 1. - {§ A+ Byplyy)+ [He]ku}"i
Energies at which cross sections were computed are listed in )

Table V. =0 (29)
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TABLE V. Rate constants® at T)=15°K.

Initial Final state

state 1y 149 249 210 33 3y 4y 443
1 .. 55 50 2.5 1.3 0.2 0.4 0.1
1y, 5.6 [ 3.1 3.4 1.3 0.8 0.3 0.0
24y 4.7 2.8 e 3.9 3.8 1.3 0.6 0.1
2y, 2.5 3.3 41 --- 2.0 3.4 0.6 0.3
343 1.7 1.7 5.3 2,7 +-- 3.4 2.8 0.3
349 0.3 1.1 2.1 4.9 3.8 e 1.5 1.4
44, 1.0 0.8 1.6 1.7 5.4 2.6 e 0.5
445 0.2 0.1 0,3 0.9 0.7 2.9 0.6 s

In units of 101! ¢cm®/ molecule-sec.

where A;; is the Einstein coefficient for spontaneous
dipole emission from state i to state j (E; > E,), By, is
the Einstein coefficient for induced dipole emission and
absorption, p(y, ,) is the energy distribution of radiation
at the isotropic background temperature (2. 7°K), v, ;

= | E; — E;| /h and [He] is the helium concentration. ¥
Here %;; is the collisional rate constant for transition
from state ¢ to state j obtained by a Boltzmann average
of the inelastic cross sections (as determined in Sec. V)
as follows (see Table V):

8 1/2 «
kij(Th):(m) ]0 Eo,(E)e*/*s™xdE ,  (30)

where E=E,, — E; is the relative translational energy.

Assuming a kinetic temperature and a helium concen-
tration, the system of equations defined by Eq. (29) is
solved for the ratio of populations »,/n;. Excitation
temperatures are then calculated using Eq. (28). In the
limit [He]— 0, radiative processes dominate and all of
the excitation temperatures reduce to T,,,. As [He]
~ o the collisional processes become dominant and all
Toxe— Tp. At helium concentrations between these limits
T,,. may lie lower than both 7,,, and 7}.

Figure 4 displays cooling curves (T, vs [He]) at T,
=5, 10, 15, and 20 °K. Cooling of both the 6 cm (T,,)
and 2 em (T,,) doublets is seen to occur at helium con-
centrations between 10° and 10° cm™® for kinetic tem-

20__ T T T T LS I 3 20 BN S i 0 0 21 SRS RS BB B R UYL §
10F Ty = 5°K T3 T2
5-_ -__/J———_!’_‘::-
,zg' v vy B 28]
|%§ T, =I0°K Tp T B 24 5
Lé IZO—- Loty 11 vl 1yl 1 Illllll_
S Igg T, =15°K TQ '|'34 .lb Tf.i_{,;
e
200 1, =20 B, B
5E -
== T T T
oz 0% 10° 05 Io®
n (em3)

FIG. 4. Excitation temperatures as a function of He density at
selected kinetic temperatures. ’

2199

oF 7o R ’
0F (eveLs 1-4.

0> 104 108 I10®
n{em3)

FIG. 5. Excitation temperatures as a function of He density

with various numbers of internal states included in the equa~

tions of statistical equilibrium, see Eq. (29).

peratures between 10 and 20 °K but not for 5 °K. The
two remaining curves, T,y and T,,, are excitation tem-
peratures for dipole allowed transitions.

Having established that the 6 and 2 cm doublets of
H,CO are cooled by a collisional pump, the question of
the relative importance of the various transitions re-
mains to be fully elucidated. By varying the number of
states used in the equations of statistical equilibrium
[limit of summation in Eq. (29)], the effect of the differ-
ent j doublets on the cooling can be assessed (see Fig.
5). Neglecting the j=4 levels caused less than 0.2 °K
changes in the effective temperatures for He concentra-
tions at which cooling occurs. Omission of the j=3
levels, however, resulted in no cooling of H,CO. At
low He concentrations (£10° cm™) radiative contribu-
tions are found to dominate collisional dipole allowed
transitions, so that rate constants k,;, kys, oy, Rag, Rss,
k4, and kg are of minor importance. Ratios of dipole
forbidden transitions, e.g., &,;/kye, are the indicators
of cooling. The large ratio of k,s/k;s~6 (Table V) im~
plies that transitions from the j=1 to the j=3 doublets
are the primary components of the cooling mechanism.

For collisions of the isotopic homologue HZ“CO, the
Born-Oppenheimer interaction potential is the same as
before and all differences are contained in the dynamical
treatment. They involve small changes in the center of
mass of H,CO, the reduced mass of the total system and
the energy level spacing. These differences are ex- .
pected to have little effect on the scattering cross sec-
tions. In agreement with observations, these calcula-
tions imply that the j=1 doublet of H,'*CO would also be
cooled.

Vil. SUMMARY

The quantum mechanical theory of scattering of a
rigid rotator by a structureless projectile was extended
to treat collisions of a rigid asymmetric top and applied
to the scattering of ortho H,CO by He at interstellar
temperatures. Using a previously determined abd initio
configuration interaction potential energy surface, cross
sections for rotational energy transfer were computed
by the coupled-channel method and averaged over a
Boltzmann distribution to obtain collision rates needed
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to test the collisional pumping model for cooling of the
6 and 2 cm doublets of ortho H,CO. The present study
shows that these doublets are cooled by collisions with
He. (It is anticipated that collisions with H, will show
the same behavior.) Thus the calculations described

"above confirm the Townes—Cheung model and, in addi-
tion, unambiguously show that cooling proceeds through
a three-doublet mechanism rather than a two-doublet
one.
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